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ABSTRACT: In this paper, chaotic behavior of the daily river discharge time series from the Karoon River, 

during January 1999-December 2004 is investigated. The phase space, which describes the evolution of the 

behavior of a nonlinear system, is reconstructed using the delay embedding theorem suggested by TAKENS. 

The delay time used for the reconstruction is chosen after examining the first minimum of the average 

mutual information (AMI) of the data. It is found that a delay time of 40 days and the sufficient embedding 

dimension is estimated using the false nearest neighbor algorithm which has a value of 8 for the river flow 

time series. Based on these embedding parameters we calculate the average divergence rate of nearby orbits 

given by the largest Lyapunov exponent. The largest Lyapunov exponent 0.0255 for is estimated. In this 

study the local prediction model has been applied to predict daily discharge time series. In this prediction 

model, the dynamics of the system are described step by step locally in the phase space, the results are quite 

satisfactory. 
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INTRODUCTION 

  

Study of river flow is important for designing, 

exploitation and study of water supply systems. River 

flow processes is dynamic, nonlinear, extremely complex, 

and are affected by several interconnected physical 

variables, so that ddifferent methods including hydrologic 

modeling, time series analysis, artificial neural networks, 

fuzzy logic, neuro-fuzzy, genetic programming and 

recently chaos theory are used for river flow modeling. 

Inspite of the previous study on river flow have 

essentially employed the concept of a stochastic process, 

recent studies have indicated that even simple 

deterministic systems, influenced by a few nonlinear 

interdependent variables, might give rise to very 

complicated structures (i.e. deterministic chaos). 

Therefore, it is now believed that the dynamic structures 

of the seemingly complex processes, such as river flow 

variations, might be better understood using nonlinear 

deterministic chaotic models than the stochastic ones. The 

investigation of the existence of chaos in hydrological 

processes has been of much interest lately. The outcomes 

of the investigations are very encouraging as they 

provided evidence regarding the existence of low-

dimensional chaos implying the possibility of accurate of 

modeling and short-term predictions.  

A chaotic system is defined as a deterministic 

system in which small changes in the initial conditions 

may lead to completely different behavior in the future. 

Signal from the chaotic system is often, at first sight, 

indistinguishable from a random process, despite being 

sensitive to initial conditions) behaviour of many systems 

was observed by many researchers for a number of 

decades, but was first described as such by Lorenz (Wilks 

(1991)). During the past two decades, the theory of chaos 

showed its applicability in solving a wide class of 

problems in many areas of natural sciences. The discovery 

that very simple deterministic systems can produce 

seemingly irregular time series pushed researchers to try 

identifying such systems and apply chaos theory in order 

to predict their behaviour. However, chaotic signal 

analysis is still a novel approach in many areas related to 

civil engineering and to water-related problems in 

particular. In literature, many researchers have 

investigated the stream flow modelling with chaos theory. 

The papers by Jayawardena & Lai (1994); Porporato & 

Ridolfi (1997); Krasovskaia et al. (1999); Stehlik (1999); 

Sivakumar et al.(2002) have shown the presence of low-

dimensional deterministic behaviour  in the stream flow 

process . Islam & Sivakumar (2002), Lisi & Villi (2001), 

Liu et al. (1998) have suggested the possibility of accurate 

stream flow predictions using nonlinear deterministic 

approaches. Elshorbagy et al.(2002) has performed noise 

reduction and missing data estimation Qingfang & Yuhua 

(2007) has developed a new local linear prediction model 

for chaotic stream flow series.  

 

METHODOLOGY 

 

Reconstruction of phase space 

http://www.science-line.com/index/
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The first step in the process of chaos theory is 

reconstructing the dynamics in phase space.  The concept 

of phase-space is a powerful tool for characterizing 

dynamic system, because with a model and a set of 

appropriate variables, dynamics can represent a real-

world system as the geometry of a single moving point .A 

method for reconstructing phase-space from a sight time 

series has been presented by Takens (1981).The time 

series is assumed to be generated by a nonlinear dynamic 

system with m degrees of freedom. It is therefore 

necessary to construct an appropriate series of state 

vectors Yt with delay coordinates in the m-dimensional 

phase space: 

  )1(2 ,...,,,  mttttt XXXXY                        (1) 

where   is referred to as the delay time and for a 

digitized time series is a multiple of the sampling interval 

used, while m is termed the embedding dimension.  If the 

dynamics of the system can be reduced to a set of 

deterministic laws, the trajectories of the system converge 

towards the subset of the phase space, called the attractor.  

The time delay   can be defined by means of an 

autocorrelation function or, as used in this study, the 

average mutual information method (Fraser & Swinney, 

1986). This method defines how the measurements X(t) at 

time t are connected in an information theoretic fashion to 

measurements X(t+ ) at time t+  (Abarbanel, 1996). 

The average mutual information is defined as:  
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Where i is total number of samples. P(X(i)) and 

P(X(i+ )) are individual probabilities for the 

measurements of X(i) and X(i+ ). P(X(i), X(i+ )) is the 

joint probability density for measurements P(X(i)) and 

P(X(i+ )). The appropriate time delay   is defined as 

the first minimum of the average mutual information I(
). Then the values of X(i) and X(i+ ) are independent 

enough of each other to be useful as coordinates in a time 

delay vector but no so independent as to have no 

connection with each other at all.  

A technique to estimate the optimal embedding 

dimension m  is by looking for false neighbours in phase 

space. The False Nearest Neighbour (FNN) method 

proposed by Kennel et al. (1992) was used to determine 

the minimal sufficient embedding dimension m.  

 

Lyapunov exponents 

Another technique to determine the presence of 

chaotic behaviour is the largest Lyapunov exponent, 

which measures the divergence of nearby trajectories in 

the phase space. Thus, a positive Lyapunov exponent is a 

strong indicator of chaos. The largest Lyapunov exponent  

 l

 is defined as:  
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Where M is the number of replacement steps, L(tk-1) 

is the Euclidean distance between the point {X(tk-1), X(tk-1-

 ),..……., X (tj-1-(m-1)  )}  and its nearest neighbour, and 

L’(tk) is the evolved length of L(tk-1) at time tk.  

Before computing the largest Lyapunov exponent, 

the dimension m of the phase space has to be determined. 

The inverse of largest Lyapunov exponent (1 / l
) 

determines the average horizon of predictability for the 

system (Rosenstein et al., 1993). 

 

Local prediction 

A correct phase-space reconstruction in a 

dimension m facilities an interpretation of the underlying 

dynamics in the form of an m-dimensional map fT , 

according to )( jTTJ YfY                                       (4) 

Where Yj and Yj+T are vectors of dimension m, 

describing the state of the system at times j  (e.g. current 

state) and j+T (e.g. future state), respectively. The 

problem then is to find an appropriate expression for fT 

(i.e. FT). Local approximation entails the subdivision of 

the fT domain into many subsets (neighbourhoods), each 

of which identifies some approximations FT , valid only in 

that same subset. In other words, the dynamics of the 

system is described step by step locally in the phase-

space. By considering a time series of a single variable, it 

is possible to reconstruct the phase space. Before applying 

reconstruction procedure it is necessary to have some 

information, embedding dimension, delay time, etc., 

concerning the attractor .One of the independent 

coordinates mentioned above is taken as the time series 

itself. The remaining coordinates are formed by its (

1m ) lagged time series shifted by ( 1m ) multiples 

of the correlation time τ, at which correlation between 

coordinates become zero. It is assumed that the time 

series data are generated from a chaotic dynamical system 

in the ν-dimensional space (  is dimension of attractor). 

In this m-dimensional space, prediction is performed by 

estimating the change of iX  with time. Considering the 

relation between the points tX  and ptX   at time p later 

on the attractor is approximated by function F as  

)( tpt XFX                                                            (5) 

In this prediction method, the change of tX  with 

time on the attractor is assumed to be the same as those of 

nearby points, ),...,2,1,( nhX
hT  . Herein, ptX   is

 
determined by the dth order polynomial )( tXF  as fallows 
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Using n of 
hTX  and

phTX


for which the values 

are already known, the coefficients f are determined by 

solution of the following equation: 

Afx                                                                            (7) 
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and A is the !!)!( dmdmn   Jacobian matrix 

which in its explicit form is 
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In order to obtain a stable solution, the number of 

rows in the Jacobian matrix A must satisfy the relation 
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As stated by Porporato & Ridolfi (1997), even 

though in the case F are first degree polynomials, the 

prediction is nonlinear, because during the prediction 

procedure every point x(t) belongs to a different 

neighbourhood and is therefore defined by different 

expressions for f (Kocak,1997). 

 

STUDY AREA AND DATA USED 

Karoon River, which has a watershed area of 

58,180 km
2
 and is located in southwest of the I.R. of Iran 

in Khuzestan province is chosen for this study. The river 

lies between the city of Ahwaz (31
o
 20’ N, 48

o
 41’ E) and 

the Bahmanshir River (30
o
 25’ N, 48

o
 12’ E), which is 

about 190 km in length. The Karoon river is a meandering 

river which supplies water for the irrigation of sugarcane 

cultivation projects, as well as other agricultural lands. 

Near the Persian Gulf, it splits into two rivers, the 

Bahmanshir and the Arvand. These two rivers flow into 

the Persian Gulf (Fig.1). For the present investigation 

river flow data observed over a period of 6 year (January 

1999-December 2004) are considered. Fig. 2 shows the 

variations of daily river flow time series and Table 1 

presents some of the important statistics of the time 

series. 
 

 
Figure 1. Location of the Karoon River 

 

 
Figure 2. Daily river time series at the Karoon River 

(1999-2004) 

ANALYSIS, RESULTS AND DISCUSSION 

 

Determination of reconstruction parameters 

In order to reconstruct the original phase space, we 

first estimate reconstruction parameters, the delay times 

  and embedding dimension m. We calculate AMI using 

time lags of 1-100 days. The time series exhibit AMI 

shows well-defined first minima at time lag 40 days (Fig. 

3). The method used for the determination of the sufficient 

embedding dimension is based on the calculation of the 

percentage of false nearest-neighbors for the time series. 

For the rest of the data considered the application of the 

method shows that the estimation value of embedding 

dimension is 8 (Fig. 4). 

 

Table 1. Statistics of daily river flow data from Karoon 

River 

Statistic Daily river flow  (m
3
/s) 

Number of Data 2192 

Mean 519.517 

Standard deviation 464.865 

Maximum value 3485.83 

Minimum value 107 

Skewness 2.8134 

Kurtosis 9.3953 

 

 
Figure 3. Mutual information function of daily discharge 

time series 
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Figure 4. Percentage of false nearest neighbour in 

embedding dimension of daily time series 

 

Estimation of the largest Lyapunov exponent 

The curves for the stretching factor  l
 versus the 

number of points N show the expected linear increase/flat 

regions (Fig.5) with    some   fluctuations Superimposed 

on the linear part of the curve. The slope value 

corresponding to the largest Lyapunov exponent is 

obtained after the least-squares line fit for the discharge 

series and is found to be 0.0255. 
 

 
Figure 5. Estimation of the Largest Lyapunov exponent 

using the method of Rosenstein et al. (1993) of daily time 

series 

 

Local Prediction 

In this study, the entire data set of 6 years is 

divided into two parts; the first 5 years of data are used in 

the phase space reconstruction and predictions are made 

for the subsequent 1 year (2003-2004) of data.  

Table 2 shows values of R
2
 and RMSE for different 

Embedding dimensions in prediction. Overall reasonably 

good predictions, with R
2
> 0.91 is achieved for all 10 

embedding dimensions. However, a closer look at the 

statistics reveals that the best predictions are achieved 

when the embedding dimension is mopt=3 for daily 

discharge time series. Fig.6 presents a comparison of the 

actual discharge values and the predicted ones. What is 

more encouraging is that even minor fluctuations present 

in the actual series are very well captured by the nonlinear 

prediction technique. Fig.7 shows the Scatter plots of 

observed and calculated values. Such results certainly 

indicate the appropriateness of the phase-space-based 

nonlinear prediction technique, employed herein, to 

understand, model and predict the discharge at the Karoon 

River. 

 

Table 2. Values of R
2
 and RMSE for different embedding 

dimensions in prediction processes 

Embedding 

Dimension (m) 
R

2
 RMSE(m

3
/s) 

1 0.9331 137.61 

2 0.932 137.56 

3 0.9343 135.19 

4 0.9197 149.64 

5 0.9122 156.46 

6 0.9111 157.34 

7 0.9147 154.07 

8 0.9173 153.93 

9 0.9326 137.04 

10 0.9233 147.44 

 
Figure 6. Comparison between time series plots of 

predicted and observed values 

Figure 7. Scatter plot of observed and predicted values of 

daily time series 

CONCLUSION 

This paper describes a series of analytic techniques 

for discerning and investigating chaotic behaviours in the 

discharge dynamics. We have analysed daily discharge 

over 6 years (1999-2004) in the Karoon River, using the 

techniques based on phase space reconstruction. In the 

study, TISEAN package (Hegger et al., 1999) has been 

used to calculate the mutual information function and the 

false nearest neighbour dimension. The phase space of the 
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discharge series is reconstructed using embedding 

parameters. These are the delay time and the embedding 

dimension which were calculated as 40,8 for discharge 

data, respectively. The results have shown that chaotic 

characteristics obviously exist in the discharge due to the 

positive largest Lyapunov exponent 0.0255. 

 In This study the local prediction model has been 

applied to discharge. In this prediction model, the 

dynamics of the system are described step by step locally 

in the phase space. The predicted values are in good 

agreement with the observations.  
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