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ABSTRACT 

Existing theoretical and empirical pile design methods cannot accurately model the complex interaction between 

piles and soil. Consequently, there is a growing trend towards utilizing machine learning techniques to better 

capture the nonlinear soil-pile interaction. This paper aims to predict the capacity of bored piles in cohesionless soils 

using a machine learning approach. The machine learning algorithm was trained using a database of 18 bored pile 

cases in non-cohesive soils and validated with a separate dataset of 8 bored piles in cohesionless soil. Moreover, the 

performance of the machine learning method was compared with that of a traditional pile design method (i.e., SA-

SPT method) in Southern Africa. The evaluation was based on the ratio of measured capacity to predicted capacity 

(Qm/Qp) statistics and the coefficient of determination (R2). The results showed an R2 of 0.89 for the machine 

learning method compared to 0.85 for the SA-SPT method, indicating the superior accuracy of the machine learning 

approach in predicting pile capacity. 

Keywords: Machine learning, SPT-based pile methods, Load Bearing Capacity, Full-scale Load Test, Chin 

extrapolation method, Terzhagi’s 10% criteria. 
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INTRODUCTION 
 

Pile foundations are vital for supporting critical and 

complex structures due to their ability to accommodate 

varying soil conditions and withstand both vertical and 

lateral loads. The reliability of structures supported by 

piles hinges upon the performance and behavior of these 

foundational elements, as emphasized by Zhang et al. 

(2020). 

Despite their importance, the interaction between soil 

and piles remains a highly complex and not fully 

understood phenomenon. Various theoretical and 

empirical methods, such as the Franki Africa method 

described by Johnson et al. (2001), have been developed to 

model soil-pile behavior. However, current procedures for 

pile design typically rely on semi-empirical approaches 

based on elastic theories and pile load test data. 

Assessing pile capacity in non-cohesive soils, such as 

sand and gravel, poses significant challenges due to their 

granular composition and unpredictable behavior. 

Traditional pile design methods (e.g. Meyerhof, 1976, 

Decourt 1995, etc.) oversimplify the complex soil-pile 

interaction and generally neglect factors like soil 

gradation, particle shape, and compaction. Generally the 

soil properties are determined using the standard 

penetration test (SPT). However, SPT has a number of 

limitations as stated by Seed et al. (1985) and Skempton 

(1986). The main limitation is the measured SPT-N values 

are not well related to the pile loading process. Pile load 

tests are commonly used to verify nominal resistances, but 

they can be costly and time-consuming. Moreover, the 

determination of pile capacity based on load-settlement 

curves lacks a single standard methodology, leading to a 

wide range of results and making pile design somewhat of 

a subjective exercise, as noted by Horvitz et al. (1981) and 

Shariatmadari et al. (2008).  

Given these challenges, there has been a recent trend 

toward leveraging machine learning techniques, as noted 

by Yago et al. (2021), to better model the intricate and 

nonlinear connections between piles and surrounding soil, 

reflecting their increasing adoption across various 

engineering applications. Shoaib and Abu-Farsakh (2023) 

emphasized the importance of carefully selecting input 

variables that influence the output, particularly in 

predicting ultimate pile capacity (Qp).  

 

 

MATERIALS AND METHODS 

 

Pile load test data 

The main input data in this study comprised of a static 

pile load tests database of 26 cases from Southern Africa 

(South Africa, Botswana, Lesotho, Mozambique, Zambia 

and Swaziland and Tanzania) along with the associated 

geotechnical data (soil profiles, field and laboratory test 
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results).  The details of the test piles and associated 

geotechnical data are presented in Appendix 1. 

 

Determination of measured Pile Capacity 

The static pile load test field records were further 

processed by plotting the load versus the head deflection 

to produce load-deflection curves. The load-deflection 

curves were then used to estimate the ultimate pile 

capacity or measured capacity (Qm). However, majority of 

the test piles are working piles tested to a maximum load 

varying from one and half to two times the design load 

which limits the movement to which the pile head is 

subjected and requires extrapolation procedure to 

determine the ultimate capacity e.g. (e.g. Chin, 1970; 

Fleming, 1992; Decourt, 1999).  On account of its 

popularity, Chin extrapolation method was adopted for 

this study. The values of measured capacities were 

compared with the predicted capacities obtained from 

Machine learning model and direct Southern African SPT 

method. 

 

Development a machine learning model  

The study used a Multiple Linear Regression (MLR) 

model developed using the SPSS Modeler to determine the 

predicted capacities. The SPSS Modeler randomly 

subdivided the 26 pile cases into (i) 18 dataset for model 

training and (ii) 8 dataset for model validation. The dataset 

for model training was structured into two main 

categories: independent variables and a dependent 

variable.  

Independent variables encompassed factors believed 

to influence the pile's capacity, such as the length of the 

pile, area of the base and shaft as shown in Appendix 2. 

The dependent variable is the measured pile capacity 

obtained from pile load tests as previously described 

The stream flow in Figure 1 shows how the dataset 

was partitioned into model training (70%) and model 

validation (30%) sets.  After training, the MLR model was 

tested using the reserved testing set to assess its 

effectiveness in making accurate predictions on unseen 

data. The trained model was then applied to predict pile 

capacity by utilizing the adjusted coefficients in a linear 

equation, and the predicted pile capacity was analyzed and 

compared with the measured pile capacity. 

 

Validation of the developed model 

As previously mentioned, the developed Machine 

Learning model was validated using a randomly selected 

dataset of 8 piles cases. The regression coefficients 

derived from the 18 pile cases model training dataset were 

applied to predict the pile capacity of the eight (8) pile 

cases to validate the model's ability to extend its 

predictions to novel and unseen data. 

 

 
Figure 1. Stream flow diagram 

 

Performance of the machine learning method 

The performance of the MLR model was evaluated 

using statistical metrics, including coefficient of 

determination (R²) which is a measure of fit between the 

measured capacity and predicted capacity from ML model. 

Furthermore, performance was evaluated on the basis of 

ML model uncertainty statistics (Mean, Standard 

Deviation, and Coefficient of Variation) which are a good 

indicator of the accuracy and precision of predicted 

capacities. The model uncertainty or model factor (M) was 

determined from Eq. 1. 

𝑀 =
𝑄𝑚

𝑄𝑝
     [1] 

Where Qm  = “capacity” interpreted from a load test, 

to represent the measured capacity;  Qp = capacity 

generally predicted using machine learning model, and M 

= model factor. 

 

Comparison with the SA SPT method 

For the Southern Africa SPT Method (SA-Method), 

the ultimate pile capacity for both shaft and base for all the 

26 cases was computed using the following equations; 

𝑞𝑏 = (𝑁1)60𝑏𝐹𝑏 ≤ 𝑞𝑚𝑎𝑥    [2] 

 

𝑞𝑠 = (𝑁1)60𝑠𝐹𝑠   ≤  𝑞𝑚𝑎𝑥    [3] 

 

Furthermore, ultimate pile base and shaft capacity are 

determined by: 

 

𝑄𝑏 = 𝑞𝑏 ∗  𝐴𝑏 =  𝑞𝑏 ∗ (
𝜋𝑑2

4
)    [4] 

𝑄𝑠 =  𝑞𝑠𝐴𝑠 =  𝑞𝑠(𝜋𝑑𝑙)    [5] 
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𝑄𝑢𝑙𝑡 = 𝑄𝑏 + 𝑄𝑠 = 𝑞𝑏(
𝜋𝑑2

4
) +  𝑞𝑠(𝜋𝑑𝑙)  [6] 

 

Where Qult = ultimate pile capacity; Qb = base pile 

capacity; Qs = shaft pile capacity; qb = base bearing 

pressure; qs = shaft bearing pressure. 

 

 
RESULTS AND DISCUSSIONS 

 

Machine learning results 

The multiple regression equation derived from the 

SPSS Modeler was formulated in the form of Eq.  8, where 

the coefficients represent the contributions of each 

independent variable to the prediction of pile design 

capacity.  

 

Qp = -2641.984+30.112L + 66.468Nb +45.619Ns + 

3988.987Ab + 63.725As       [8] 

 

Where Qp: Predicted Pile Capacity, L= Length, Nb = 

SPTN for base, Ns = SPT-N for shaft, Ab =Area of base 

and As = Area of shaft 

The measured capacities (Qm) obtained and the 

predicted capacities (Qp) from the ML model are presented 

in Table 1. The ensuing model factors computed as per 

Eq.1 are also shown in Table 1. 

To gain better insight, the measured capacities were 

plotted against the predicted capacities as shown in Figure 

2. 

It can be seen from Figure 2 that the R
2
 is 0.90 which 

indicate an excellent fit between the predicted and 

measured pile capacities. On the basis of the R
2
, it can be 

inferred that the Machine Learning method predicts pile 

capacity with high accuracy.  

Further insight is shown by the summary statistics of 

the model factor which are also shown in Fig. 2.  At µ = 

0.99 and COV = 0.30, the ML pile capacity prediction 

method is relatively very good. The superiority of 

Machine Learning method in predicting pile capacity 

compared to traditional empirical methods has been other 

studies (e.g. Gomes et al 2021, Shoaib and Abu-Farsakh, 

2023).  

For example, Gomes et al reported that all machine 

learning techniques investigated obtained a root mean 

squared error (RMSE)  below 710, surpassing Meyerhof’s 

and Décourt-Quaresma’s semi-empirical methods, which 

both obtained RMSE values close to 900.  

 Table 1.  Qm and Qp  for ML model 

 

 

 
Figure 2- Scater plot of Qm Vs Qp 

 

Validation results 

The measured and predicted capacities for the 8 

validation cases together with the model factors are 

presented in Table 2. Furthermore, a plot of the measured 

versus predicted capacities is presented in Figure 3.  

Further analysis of Figure 3 shows an R
2
 of 0.74 which is 

good enough for geotechnical work. The Model factor 

statistics are even better at µ = 1.03 and COV = 0.24. This 

implies that the developed Machine Learning Model can 

be used to predict pile capacity for bored piles in non-

cohesive soils outside the current database. 
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Case Qm Qp M = Qm/Qp 

1 1427 1647 0.866 

2 3319 3226 1.029 

3 3315 3265 1.015 

4 1224 992 1.234 

5 887 939 0.944 

6 1587 939 1.690 

7 1087 774 1.405 

8 1361 939 1.449 

9 990 884 1.120 

10 4706 4543 1.036 

11 1232 1647 0.748 

12 435 1307 0.333 

13 1136 1143 0.994 

14 653 541 1.205 

15 943 1064 0.886 

16 1695 1623 1.044 

17 1227 1397 0.878 

18 617 969 0.637 
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Table 2. Qm and Qp for validation cases 

Case Qm Qp m = Qm/Qp 

1 1055 1514 0.70 

2 1453 2110 0.69 

3 1483 1217 1.22 

4 1799 1458 1.23 

5 2375 2247 1.06 

6 3094 2878 1.08 

7 4606 3618 1.27 

8 3154 2988 1.06 

 

 
Figure 3: Scater plot of Qm Vs Qp for validation data 

 

Results for SA SPT-based method 

For comparison purposes, the measured capacities, 

predicted capacities and model factors of the SA- SPT 

based method are presented in Table 3. The R
2
 is 0.84 

(Figure 4) which is good but lower that that yielded by the 

ML method. However, the Model factor statistics at µ = 

0.87 and COV = 0.25 is slightly better, especially the COV 

which is a measure of variability. The key point here is 

that the results of the ML method are comparable with that 

of the well-established SA- SPT based method.  

 

 
Figure 4: Scater plot of Qm Vs Qp for SA SPT method 

Table 3: Qm and Qp for SA- SPT based method 

Case 
Measured 

pile capacity 

Predicted pile 

capacity 
M = Qm/Qp 

1 1427 1754.97 0.813 

2 3319 4583.09 0.724 

3 3315 3713.36 0.893 

4 1224 1088.5 1.124 

5 887 1192.31 0.744 

6 1587 1192.31 1.331 

7 1087 1134.12 0.958 

8 1361 1192.31 1.141 

9 990 1172.91 0.844 

10 4706 4860.7 0.968 

11 1232 1694.94 0.727 

12 435 1586.46 0.274 

13 1136 1321.98 0.860 

14 653 1014.73 0.643 

15 943 1528.82 0.617 

16 1695 1898.7 0.893 

17 1227 1448.27 0.847 

18 617 1216.49 0.507 

19 1055 1842.94 0.572 

20 1453 2242.7 0.648 

21 1483 1403.7 1.056 

22 1799 1467.71 1.225 

23 2375 4721.78 0.503 

24 3094 5721.56 0.541 

25 4606 9545.19 0.483 

26 3154 7954.32 0.396 

 

CONCLUSIONS 

 

A plot of Qm versus Qp for the Machine Learning approach 

yielded a high R
2
 of 0.9, which is an indication that the 

method is very accurate in predicting pile capacity. Model 

validation results produced R
2
 of 0.74 and model factor 

statistics of µ = 1.03 and COV = 0.24 which are very 

good. This implies that the developed Machine Learning 

Model can be used to predict pile capacity for bored piles 

in non-cohesive soils outside the current database. The 

results of the well-established SA-SPT method (R
2
 of 0.84 

and M- statistics of µ = 0.87 and COV = 0.25) is 

comparable to that of the ML method. 

For further research, it is recommended that more pile 

load test data be collected for both training and validating 

the Machine Learning Model. 
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Appendix 1: Pile load tests database 

Case Soil type 
Pile type 

Shaft dia. 

(mm) 

Base 

dia.(mm) 

SPT N-value 
Length 

(m) 

 Base  Shaft base Shaft  

1 
Medium dense 

sandy gravel 

Medium dense 

sandy gravel 
Auger 430 430 30 20 8 

2 Gravel Gravel Auger 600 750 30 20 9 

3 Gravel Gravel Auger 750 600 30 20 11 

4 Sand Sand CFA 360 350 29 14 7.8 

5 Sand Sand CFA 400 400 23 13 9.5 

6 Sand Sand CFA 400 400 23 13 9.5 

7 Sand Sand CFA 400 400 23 13 8 

8 Sand Sand CFA 400 400 23 13 9.5 

9 Sand Sand CFA 400 400 23 13 9 

10 Sand Sand Auger 520 520 38 38 16.5 

11 Sand Sand Auger 430 430 25 17 11.5 

12 Dense sand Sand Auger 450 450 25 15 9 

13 Sand Sand CFA 400 400 22 17 10 

14 Sand Sand CFA 400 400 19 16 7 

15 Sand Sand CFA 500 500 19 16 7.8 

16 Sand Sand CFA 500 500 22 17 10 

17 Sand Sand CFA 400 400 25 16 11 

18 Sand Sand CFA 400 400 24 13 9.2 

19 Sand Sand CFA 500 500 25 14 9.5 

20 Sand Sand CFA 500 500 26 17 11.8 

21 Sand Sand CFA 500 500 13 14 12.3 

22 Sand Sand CFA 500 500 13 13 14.5 

23 very dense sand Sand Franki 520 760 17 9 12 

24 Dense gravel medium sand Franki 520 760 17 14 15 

25 dense sand medium sand Franki 520 760 36 32 6 

26 very dense sand medium sand Franki 520 760 30 20 8 
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Appendx 2: Input data used in MLR Model 

Case No.  Length SPT N-base SPT N-shaft Area-base Area-shaft Qm 

1 8 28.5 19 0.15 10.81 1427 

2 9 28.5 19 0.44 16.96 3319 

3 11 28.5 20 0.28 25.92 3315 

4 7.8 27.55 13.3 0.1 8.82 1224 

5 9.5 21.85 12.35 0.13 11.94 887 

6 9.5 21.85 12.35 0.13 11.94 1587 

7 8 21.85 12.35 0.13 10.05 1087 

8 9.5 21.85 12.35 0.13 11.94 1361 

9 9 21.85 12.35 0.13 11.31 990 

10 16.5 36.1 38 0.21 26.95 4706 

11 11.5 23.75 17 0.15 15.54 1232 

12 9 23.75 14.25 0.16 12.72 435 

13 10 20.9 17 0.13 12.57 1136 

14 7 18.05 15.2 0.13 8.8 653 

15 7.8 18.05 15.2 0.2 12.25 943 

16 10 20.9 17 0.2 15.71 1695 

17 11 23.75 16 0.13 13.82 1227 

18 9.2 22.8 12.35 0.13 11.56 617 

19 9.5 23.75 11.9 0.2 14.92 1055 

20 11.8 24.7 17 0.2 18.54 1453 

21 12.3 12.35 14 0.2 19.32 1483 

22 14.5 12.35 13 0.2 22.78 1799 

23 12 16.15 9 0.45 19.6 2375 

24 15 16.15 14 0.45 24.5 3094 

25 6 34.2 30.4 0.45 9.8 4606 

26 8 28.5 19 0.45 13.07 3154 
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