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ABSTRACT 

The quality of concrete used in the construction sector is increasing day by day with ready-mixed concrete 

production. The quality of concrete is directly related to its compressive strength and the related tests are labor-

intensive and time-consuming. Therefore, different artificial intelligence-based models are used to predict the 

compressive strength of concrete. In this study, compressive strength and design parameters of concrete classes 

C30/37, C35/45 and C40/50 were predicted by ANN model. A total of 240 compressive strength results obtained 

from concretes produced in a ready-mixed concrete plant for the construction of columns, beams, decks and stairs. 

70% of these data were used for training and remaining 30% of data were reserved for testing. The prediction 

accuracy of the ANN model was evaluated by R2, MAPE and RMSE statistical methods. According to results, the 

compressive strengths of concrete classes C30/37, C35/45 and C40/50 could be predicted with errors of -0.70%, 

1.25% and 0.17% for 7 days and 0.99%, 0.03% and -0.69% for 28 days, respectively. Depending on the design 

parameters, it was found that prediction performance could be made with almost 100% accuracy for all concretes 

except high-performance superplasticizer admixture. As a result, it was concluded that ‘very good’ or ‘high 

accuracy’ predictions can be made with ANN models. 

Keywords: ANN, Compressive Strength, Concrete, Design Parameters. 
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INTRODUCTION 
 

Concrete is one of the most commonly used building 

materials in the construction industry and stands out as a 

material that has been extensively researched in terms of 

both strength and durability properties (Yurt and 

Emiroğlu, 2018; Yurt and Emiroğlu, 2024). The quality of 

concrete used in the construction industry has changed 

significantly with the increase in ready-mixed concrete 

production. Ready-mixed concrete is produced by mixing 

the materials (cement, aggregate, water, and/or chemical 

and mineral additives) that are brought together in 

appropriate proportions with computer control in a 

concrete plant or mixer and delivered to the consumer as 

“fresh concrete” (Ünal and Yurtcu, 2007). Thanks to 

ready-mixed concrete technology, both the mass 

production of the required concrete and its desired 

properties have been achieved. Therefore, today, the 

production and use of concretes with compressive strength 

of C30/37 or higher have become widespread (Dündar et 

al., 2017). Compressive strength is directly related to the 

safety of structures constructed from concrete and must 

comply with relevant standard codes that vary between 

countries. To determine the compressive strengths of 

concrete, cylindrical or cubic samples are tested using a 

pressure testing machine after the required curing period. 

The 28-day compressive strength of the resulting 

cylindrical or cube specimens is accepted as the 

characteristic compressive strength of concrete by national 

and international regulations. These tests are labor 

intensive and time consuming. Therefore, different 

methods such as artificial intelligence-based models, 

regression methods and numerical simulation are used to 

predict the compressive strength of concrete. However, the 

complex non-linear correlation between the variables 

involved makes it very difficult to obtain accurate values 

of compressive strength (Chou et al., 2022). 

In this context, artificial neural networks (ANN), 
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which are among the artificial intelligence-based models, 

are preferred in many studies to predict different 

properties of concretes produced with different design 

parameters. Sah and Hong (2024) used ANN, support 

vector machine, multiple linear regression, and regression 

tree models to predict of concrete compressive strength 

using age, cement, water, superplasticizer, fly ash, blast 

furnace slag, coarse aggregate and fine aggregate. Yasin 

(2024) predicted of the dynamic shear modulus, dynamic 

modulus of elasticity, and dynamic poisson's ratio of 

concrete using ANN. A study was performed by Kumar 

and Kumar (2024) to predict Marshall stability of waste 

plastic reinforced concrete using ANN, support vector 

machine (SVM), random forest (RF), random tree (RT), 

and bagging RT. In their recently study, Salihi and Hamad 

(2024) explored the capabilities of ANN and gradient 

boosting‑based predictive techniques in predicting the 

punching shear capacity of concrete slabs reinforced with 

FRP bars. In all of these studies and many other studies 

(Mosquera et al., 2024; Jaf et al., 2024; Harith et al., 2024; 

Duan et al., 2024), it is stated that ANN can be used to 

predict different properties of concrete and accurate 

prediction results could be achieved. Furthermore, ANN 

can help optimize concrete mix designs by predicting the 

best design parameters (cement, water, aggregate, and 

chemical and mineral additives) to meet many more 

performance criteria of concrete. 

In this study, an ANN model was created to predict 

the compressive strength and mixing ratios of concrete for 

three different concrete classes (C30/37, C35/45, C40/50) 

and two different hydration days (7 days, 28 days). In the 

training and testing of the model created to predict the 

compressive strength of the ANN, 7 different inputs 

(hydration day, cement, water, high-performance 

superplasticizer, fine aggregate in the range of 0-4 mm, 

coarse aggregate in the range of 4-11.2 mm, coarse 

aggregate in the range of 11.2-22.4 mm) were used. In the 

estimation of the design parameters, the compressive 

strengths obtained from the experiments were used as 

input variables. Then, the experimentally determined 

results with ANN estimations were compared with R
2
, 

MAPE and RMSE statistical methods and the obtained 

estimation results were discussed in the relevant sections. 

 

MATERIAL AND METHODS 

 

Material 

CEM II/A-M (P-L) 42.5 R type cement (PC) 

manufactured by Ferpa Cement Plant (Kayseri) based on 

TS EN 197-1 (2012) standard was used as binder material. 

The chemical, physical and mechanical properties of PC 

determined according to the TS EN 196-2 (2013), TS EN 

196-6 (2020), TS EN 196-3 (2017) and TS EN 196-1 

(2016) standards are given in Table 1. The water used in 

the mixtures of the concretes is the municipal water in 

Kayseri province and conforms to TS EN 1008 (2003). 

Fine aggregate in the range of 0-4 mm, coarse aggregate in 

the range of 4-11.2 mm and 11.2-22.4 mm were used in 

the study, and tests for determining the physical properties 

of aggregates were carried out in accordance with the 

requirements of TS EN 1097-6 (2013), and given in Table 

2. 

As chemical additive, Conslumper 5170 S type high-

performance superplasticizer additive was used. High-

performance superplasticiser exhibited conventional dry 

material content of 16.20, relative density of 1.050, alkali 

content of 0.6%, pH value of 4.2. 

 
Table 1. Properties of portland cement 

Materials, PC 
Analysis 

result 

TSEN 197-1, 

requirements 

Analysis 

method 

Chemical properties, % 

SO3 3.48 Max. 4.0 
TS EN 

196-2 

Na2O 0.23 - 
TS EN 

196-2 

K2O 0.32 - 
TS EN 

196-2 

Total Alkali  

(Na2O Equivalent) 
0.44 - 

TS EN 

196-2 

Cl- 0.0110 Max. 0.10 
TS EN 

196-2 

Physical and mechanical properties 

Specific gravity 3.10 - 
TS EN 

196-6 

Specific surface 

(Blaine), cm2/g 
3471 - 

TS EN 

196-6 

Volume expansion, 

mm 
1.3 Max. 10 

TS EN 

196-3 

Initial setting time, 

min. 
146 Min. 60 

TS EN 

196-3 

Compressive strength 

(2-day), MPa 
28.2 Min. 20 

TS EN 

196-1 

Compressive strength 

(28-day), MPa 
51.9 

Min. 42.5, 

Max. 62.5 

TS EN 

196-1 
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Table 2. Physical properties of aggregate 

Physical properties 
Aggregate, mm 

0-4 4-11.2 11.2-22.4 

Apparent particle density-qa 

(Mg/m3) 
2.67 2.77 2.73 

Particle density on an oven-

dried basis-qrd (Mg/m3) 
2.62 2.75 2.70 

Particle density on a saturated 

and surface-dried basis- qssd 

(Mg/m3) 

2.64 2.76 2.71 

Loose bulk density, (Mg/m3) 1.70 1.375 1.349 

Water absorption ratio, (%) 0.70 0.38 0.32 

 

Methods 

In this study, concrete samples of C30/37, C35/45 and 

C40/50 classes were produced at a concrete plant 

operating in Kayseri province between 2022 and 2024. For 

each concrete class, the compressive strength result of the 

concretes prepared for 20 different structural elements was 

obtained. The concrete samples were placed in 15 cm cube 

moulds during the casting of the ready-mixed concrete. 

These samples were kept in the moulds for 24 hours and 

then kept in a Jeotest brand curing pool in 23±2 
o
C water. 

On the 7th and 28th days, the compressive strengths of the 

samples taken from the curing pool were determined 

according to TS EN 12390-3 (2010). Mix designs for each 

concrete class are given in Table 3. 

 

Table 3. Mixture designs of concrete classes 
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C30/37 310 140 4.03 950 255 700 

C35/45 340 140 4.42 900 265 720 

C40/50 380 140 4.94 900 270 720 

 
Artificial neural networks 

Artificial neural networks (ANN) are one of the 

widely used statistical methods that simulate the human 

brain and process data accordingly.  The ANN model is 

based on layers called input layer, hidden layer and output 

layer. These layers are connected to each other through 

weights and biases (Jaf et al., 2024). The input layer 

contains a set of input nodes representing the input 

variables. The hidden and output layers contain the 

computational nodes and the output variable node, 

respectively (Beynood et al., 2015). As shown in Figure 1, 

the hidden layer can be more than one and each of them 

consists of neurons that are not directly connected to the 

input or output of the network (Kumar and Kumar, 2024). 

In very complex problems, it may be useful to use more 

than one hidden layer (Sevim et al., 2021). ANN learns 

from past or previously measured data, captures unknown 

data better than traditional statistical methods, and solves 

new problems without any prior knowledge of the nature 

of these interactions (Sakthivel et al., 2016). For this 

reason, ANN is used extensively in many fields of science 

to find solutions to different problems. For detailed 

information about ANN, different sources can be 

examined (Buscema, 2002; Grossi and Buscema, 2007; 

Kocak et al., 2023). 

 

 
Figure 1. ANN’s schematic diagram 

 

Ann design and model parameters 

The concrete classes used in the training and testing of 

these models consist of three classes: C30/37, C35/45, 

C40/50. The prepared concretes were used as columns, 

beams, decks and stairs. An Elman backpropagation neural 

network model was developed after different modelling to 

predict the compressive strengths and design parameters of 

the samples of concrete classes. In order to predict the 

compressive strength of the concretes in this model, seven 

parameters including hydration age (days), cement, water, 

hyperplasticising admixture, fine aggregate in the range of 

0-4 mm, coarse aggregate in the range of 4-11.2 mm and 

coarse aggregate in the range of 11.2-22.4 mm constituted 

the input variables of the ANN model (Figure 2a). The 

compressive strength results obtained from the tests at 7 

and 28-days were used as input to predict the design 

parameters (Figure 2b). The training parameter values of 

ANN models are given in Table 4.  

 

 
Figure 2. ANN’s architectural network structure 

Input values

i1 i2 i3 i4

Processing neurons

Optional neurons

Output values

Weighted connections

Weighted connections

Weighted connections

o1 o2

a

b



J. Civil Eng. Urban., 14 (4): 356-367, 2024 

 

359 

Table 4. Training parameter values of the ANN model 

Parameters ANN-a ANN-b 

Input layer neuron numbers 7 2 

Layer numbers 3 3 

Hidden layer numbers 2 2 

First hidden layer neuron numbers 10 10 

Second hidden layer neuron numbers 50 50 

Output layer neuron number 1 6 

 

The minimum and maximum values of the input and 

output variables used in the ANN model for 1 m
3
 concrete 

are given in Table 5. 

A total of 240 compressive strength results obtained 

from 20 concrete pours of each concrete class and two 

sample results for each hydration day were used for 

training the ANN model. Of these results, 70% (168 data) 

were used for training and 30% (72 data) were used for 

testing. An equal number of samples were taken from each 

concrete class and hydration day data. The Randomisation 

function was used to objectively split test and training data 

and the initial seed value was set to 43. 

Table 5. Input and output values used in ANN models (for 

1 m
3
 concrete) 

Variable 

properties 
Variables Min. Max. 

Input or 

output 

Ages, day 7 28 

Cement, kg/m3 310 380 

Water, kg/m3 140 140 

High-performance 

superplasticizer, kg/m3 
4.03 4.94 

Fine aggregate  

(0-4 mm), kg/m3 
900 950 

Coarse aggregate  

(4-11.2 mm), kg/m3 
255 270 

Coarse aggregate  

(11.2-22.4 mm), kg/m3 
700 720 

Input or 

output 
Compressive Strength, MPa 31.0 56.7 

 

 

RESULTS AND DISCUSSION 

 

The experimental results in the training and testing phases 

for each concrete class and the prediction performances of 

the ANN model are given in Figure 3. 

 

 

 
Figure 3.  Experimental results in training and test phases and compressive strength prediction values obtained from ANN 

model 
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According to the experimental results, 7-day 

compressive strength results of C30/37, C35/45 and 

C40/50 concrete classes were in the range of 31.0, 35.2 

and 41.0 MPa for the smallest values and 35.8, 39.8 and 

45.7 MPa for the largest values, respectively (Figure 3).  

The 28-day compressive strength results, which determine 

the concrete classes, were in the range of 39.0, 44.0 and 

52.0 MPa for the smallest values and 45.3, 51.8 and 56.7 

MPa for the largest values, respectively (Figure 3). 

Therefore, since the samples were cube samples, it is seen 

that the smallest concrete strength values at 28th hydration 

day are above 37 MPa, which is the smallest value in 

C30/37 concrete class, 45 MPa, which is the smallest 

value in C35/45 concrete class, and 50 MPa, which is the 

smallest value in C40/50 concrete class. Therefore, it can 

be said that all concrete samples were produced in 

accordance with the standards according to the 

compressive strength results. 

The prediction values obtained from the ANN model in 

the training and testing phase were 32.8, 38.0 and 43.9 

MPa for 7-day compressive strength and 43.2, 49.3 and 

54.2 MPa for 28-day compressive strength of C30/37, 

C35/45 and C40/50 concrete classes, respectively (Figure 

3). 

Coefficient of determination (R
2
), mean absolute 

percentage error (MAPE) and root-mean squared error 

(RMSE) statistical methods were used to determine the 

reliability of the prediction values obtained from the 

experiments and models. These are shown in Equations 

(1), (2) and (3), respectively (Sakthivel et al., 2016; Aali et 

al., 2009). 
 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑟𝑖)

2𝑁
𝑖=1

∑ (𝑟𝑖−𝑦𝑚)2𝑁
𝑖=1

            (1) 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝑟𝑖−𝑦𝑖

𝑟𝑖
|𝑁

𝑖=1       (2) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑖 − 𝑟𝑖)

2𝑁
𝑖=1      (3) 

 

The R
2
 results between the prediction values obtained 

from the ANN model in the training and testing phase and 

the actual results are given in Figure 4. Furthermore, the 

statistical results between the prediction values obtained 

from the ANN model used in the prediction of 

compressive strengths in the training and testing phase and 

the actual results are given in Table 6. 

 

 

Figure 4. Coefficient of determination of compressive strength data during training and testing in ANN model 
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Table 6. Statistical results obtained from ANN model for 

compressive strengths 

Concrete class R2 MAPE RMSE 

 Training 

C30/37 0.8986 2.1x10-4 1.6743 

C35/45 0.9255 6.1x10-4 1.6403 

C40/50 0.9386 4.0x10-5 1.3412 

 Testing 

C30/37 0.9483 1.1x10-3 1.5378 

C35/45 0.9672 2.7x10-3 1.1938 

C40/50 0.9655 2.3x10-3 1.5259 

 

It is seen that the R
2
 values of ANN prediction results 

are (0.8986-0.9255-0.9386) in the training phase and 

(0.9483-0.9672-0.9655) in the test phase for C30/37, 

C35/45 and C40/50 concrete classes, respectively (Table 

6). The MAPE values of these concrete classes were 

calculated as (0.00021-0.00061-0.00004) in the training 

phase and (0.00113-0.00273-0.00229) in the test phase, 

respectively (Table 6). RMSE values were calculated as 

(1.6743-1.6403-1.3412) in the training phase and (1.5378-

1.1938-1.5259) in the test phase, respectively (Table 6). 

RMSE values were calculated as (1.6743-1.6403-1.3412) 

in the training phase and (1.5378-1.1938-1.5259) in the 

test phase, respectively (Table 6). It is seen that the R
2
 

value is very close to one in all models, but even the worst 

prediction value has an error of about 10%. When the 

MAPE results are considered, it is seen that the error rate 

is below 10% in all models of training and testing phases 

training, and even the worst prediction value can be 

predicted with an error rate of 0.27%, i.e. 99% accuracy. 

According to RMSE evaluations, it is seen that all models 

are close to 0. When the data obtained from the ANN 

model are evaluated as a whole, it can be said that 

compressive strength values can be determined with 

acceptable error rates. 

In addition, the average of all samples taken during 

casting and used in training and testing were taken 

separately for each concrete class and hydration day in 

order to better see the agreement between the actual results 

and the prediction results. These values and the values 

predicted from the models are given in Figure 5. 

According to these results, the compressive strengths 

of C30/37, C35/45 and C40/50 concrete classes for 7-day 

were predicted with an error of 2.13%, -1.05% and -

1.36%, respectively. These values were predicted with 

errors of -0.69%, -0.81% and 0.18% for C30/37, C35/45 

and C40/50 concrete classes for 28-day, respectively 

(Figure 5). Therefore, it can be stated that the compressive 

strengths predictions according to statistical indices and 

actual values are almost identical and both models can be 

used for such studies. In addition, the values of cement, 

water, high-performance superplasticizer, fine aggregate in 

the range of 0-4 mm, coarse aggregate in the range of 4-

11.2 mm, coarse aggregate in the range of 11.2-22.4 mm, 

which are the output variables according to the 

compressive strengths desired to be obtained on the 7th 

and 28th day with the ANN model created, are given in 

Figure 6 for training and testing. In addition, the 

coefficient of determination values between the predicted 

results and the actual results in the training and testing 

phase are given in Figure 7. Furthermore, the statistical 

results determined between the prediction values obtained 

from the ANN model used in the prediction of the design 

parameters in the training and testing phase and the actual 

results are given in Table 7. 

 

 
Figure 5. Comparison of average test results and predicted 

results for concrete classes 
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Figure 6. Predicted material mix quantities according to the desired compressive strength results 
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Figure 7. Coefficient of determination of the predicted material mix quantities according to the compressive 

strength results. 
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Table 7. Statistical results for design parameters 

Design parameters, 

kg/m3 
PC Water 

High-performance 

superplasticizer 

Aggregate 

(0-4 mm) 

Aggregate 

(4-11.2 mm) 

Aggregate 

(11.2-22.4 mm) 

Training 

R2 0.9576 1 0.7657 0.9010 0.8306 0.8849 

MAPE 1.7x10-6 3.4x10-7 2.1x10-4 1.6x10-5 1.3x10-4 5.0x10-6 

RMSE 5.9174 0.0032 0.1898 7.4184 2.6300 3.2065 

Testing 

R2 0.9757 1 0.8587 0.9323 0.8862 0.9412 

MAPE 1.0x10-4 1.0x10-7 4.4x10-4 5.2x10-5 3.1x10-4 2.9x10-5 

RMSE 4.7113 0.0022 0.1629 6.1405 2.3976 2.3905 

 

 
Table 8. Comparison of predicted average results with actual design parameter results 

Concrete 

class 
Results 

 Design parameters 

Day 
PC,  

kg/m3 

Water, 

kg/m3 

High-performance 

superplasticizer, 

kg/m3 

Aggregate             

(0-4 mm), 

kg/m3 

Aggregate           

(4-11.2 

mm), kg/m3 

Aggregate         

(11.2-22.4 

mm), kg/m3 

C30/37 
Predicted results 

7 310.9 140 3.96 948.52 255.48 700.4 

28 313.18 140.01 4.14 945.07 255.81 701.93 

Exp. results 7 and 28 310 140 4.03 950 255 700 

C35/45 
Predicted results 

7 341.58 140 4.68 902.01 264.86 719.14 

28 339.14 140 4.55 904.84 264.61 717.74 

Exp. results 7 and 28 340 140 4.42 900 265 720 

C40/50 
Predicted results 

7 378.99 140 4.87 900 269.29 720 

28 378.35 140 4.83 900 269.43 720 

Exp. results 7 and 28 380 140 4.94 900 270 720 

   
Error, % 

C30/37 
Predicted results 

7 -0.29 0 1.9 0.16 -0.19 -0.06 

28 -1.01 0 -2.57 0.52 -0.32 -0.27 

Exp. results 7 and 28 - - - - - - 

C35/45 
Predicted results 

7 -0.46 0 -5.59 -0.22 0.05 0.12 

28 0.25 0 -2.83 -0.53 0.15 0.31 

Exp. results 7 and 28 - - - - - - 

C40/50 
Predicted results 

7 0.27 0 1.35 0 0.26 0 

28 0.44 0 2.24 0 0.21 0 

Exp. results 7 and 28 - - - - - - 
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CONCLUSIONS 

 

In this study, both compressive and design parameters of 

concrete classes C30/37, C35/45 and C40/50 were 

predicted by Elman backpropagation ANN model. A total 

of 240 experimental results were used for training and 

testing phases of the study. 

According to the data obtained from the model to 

predict the compressive strength; 

 According to the experimental results, the smallest 

compressive strength results of C30/37, C35/45 and 

C40/50 concrete classes at 28 days were obtained as 39.0, 

44.0 and 52.0 MPa, respectively, and the smallest values 

of these concrete classes, 37 MPa, 45 MPa and 50 MPa, 

were achieved above the relevant standard requirements; 

 The predicted values of C30/37, C35/45 and C40/50 

concrete classes in the training and testing phase were 

32.8, 38.0 and 43.9 MPa for 7-day compressive strength, 

43.2, 49.3 and 54.2 MPa for 28-day compressive strength, 

respectively; 

 The R
2
 values of the ANN prediction results in the 

training and testing phase were calculated as (0.8986-

0.9255-0.9386) and (0.9483-0.9672-0.9655) for the 

compressive strengths of C30/37, C35/45 and C40/50 

concrete classes, respectively; 

 Considering the MAPE results, the error rate is 

below 10% in all models in both the training and testing 

phase, and even the worst prediction value can be made 

with an error rate of 0.27% (99.73% accuracy); 

 The RMSE values are calculated as (1.6743-1.6403-

1.3412) and (1.5378-1.1938-1.5259) in the training and 

test phase, respectively, and are close to 0, 

 It was determined that there was a significant 

consistency between the actual results obtained from the 

experiments and the prediction results. Moreover, the 

compressive strengths of concrete classes C30/37, C35/45 

and C40/50 could be predicted with an error of 2.13%, -

1.05% and -1.36% for 7 days and -0.69%, -0.81% and -

0.18% for 28 days, respectively. 

According to the data obtained from the model to 

predict the design parameters; 

 For any desired compressive strength of C30/37, 

C35/45 and C40/50 concrete classes, the R
2
 value can be 

predicted with 76% accuracy in the training phase and 

85% accuracy in the test phase in determining the amount 

of high-performance superplasticizer that can be 

characterised as the most negative; 

 The design parameters of these concrete classes can 

be predicted with 100% accuracy according to MAPE and 

RMSE values are also very good; 

 When the actual results obtained from the 

experiments are compared with the average of the 

prediction results in the training phase, it is seen that the 

highest error is 5.59% on day 7 in the high-performance 

superplasticizer of C35/45 concrete class, while the other 

concretes can be predicted with almost 100% accuracy. 

Therefore, when these results are evaluated as a 

whole, it can be stated that the Elman backpropagation 

neural network model is reliable and can be used 

successfully in the prediction of both compressive 

strengths and design parameters 
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