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ABSTRACT: Based on Linton and Evans (1990) analytical solution, the diffraction of linear water waves by 

N bottom mounted circular cylinders has been investigated. In order to study the first order interaction 

between cylinders, the boundary condition on each cylinder surface due to the scattered waves of all other 

cylinders is taken into account and relations for calculation of forces acting on cylinders are derived. This 

paper is mainly concerned with vertical cylinders located at vertices of a square. For this configuration the 

phenomenon of near-trapping mode and the wavelength associated with it is considered and for different 

wave length the force acting on each cylinder is determined. Also the wave surface elevation around 

cylinders which can be legs of an offshore platform or piles of a floating island is determined and using 

MATLAB programming the results are plotted in three dimensional form.  

Keywords: Diffraction of water waves; Trapped modes; Hydrodynamic interaction; Array of vertical 

cylinders. 

 

INTRODUCTION 

The hydrodynamic interaction of diffracted waves 

by an array of vertical circular cylinders has received 

considerable interest in recent years. Such configuration is 

common in many offshore and onshore structures such as 

columns of a TLP platform, piles of a floating island, 

quay piles, connecting bridge columns and columns of 

very large floating structures (VLFS). 

Numerical methods can be used for solution of this 

problem, however, expensive software or expertise in 

writing numerical codes is required. An alternative 

approach is the use of analytical methods. In this regard 

several various analytical solutions have been developed. 

Havelock (1940) solved the diffraction problem 

analytically for a single bottom-mounted circular cylinder 

in water of infinite depth. McCamy and Fuchs (1954) 

extended this result to finite depth and this solution has 

been extended to multiple cylinders by Ohkusu (1974). 

Detailed reviews of these early works have been given by 

Mei (1983). Kagemoto and Yue (1986) presented a 

general solution for diffraction of symmetric cylinders. 

The problem of scattering of water waves by arrays of 

fixed vertical circular cylinders is solved exactly by 

Linton and Evans (1990). Thereafter their solution has 

been used as the basis of further work by many 

investigators. 

Using a higher order three dimensional spline-

Galerkin panel method, Maniar and Newman (1997) 

found excitation forces acting on circular cylinders that 

were along an axis and found that near-resonant modes 

occur between adjacent cylinders when they are at a 

critical space. In these modes the force acting on each 

cylinder was very large compared with an isolated 

cylinder. These modes were associated with the existence 

of trapped waves in a channel. The existence of such 

trapped waves had been established by Linton and Evans 

(1992) and Evans and Porter (1997b). Kagemoto et al. 

(2002) experimentally analyzed the trapped mode 

phenomenon for linear arrays of cylinders in a water tank. 

They found that for incident regular waves at the 

predicted trapped mode frequencies, the magnification 

effects were substantially less than predicted by theory. At 

first, they related this discrepancy to the unsteady flow but 

further experiments showed that the flow attains a steady 

state. Then they related the matter to the viscous effects 

that are neglected in potential flow but they found that the 

magnitude of drag forces that result from flow separation 

is small. Finally they considered the viscous dissipative 

effects within the boundary layers at the cylinder walls, 

which has been rendered slightly porous to reproduce 

dissipative effects within the potential flow model, and 

found very good agreement between theoretical and 

experimental results. Duclos and Clement (2004) 

considered the disorders in cylinder spacings and/or radii 

and found that forces associated with near-trapped modes 

substantially reduce by disorder of cylinder spacing. They 

showed that disorder less than 0.5% cylinder spacing for 

the array is sufficient to reduce the large forces. Instead of 

using a monochromatic wave, Walker and Taylor (2005) 

used a model of real sea proposed by Tromans et al. 

(1991). The diffraction of monochromatic waves by an 

array of four bottom mounted cylinders using linear and 

second order theory has been studied by Walker et al. 

(2008). They presented their results by a numerical 

diffraction code named DIFFRACT which is written 

based on the boundary element method. 

In this paper first the theoretical solution of Linton 

and Evans (1990) is reviewed. |Results of this theory 

related to the vertical cylinders that arranged either in an 
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array arbitrary or located at vertices of a square such as 

the legs of a TLP platform are presented and discussed. 

Finally free surface elevation of water around these legs is 

presented in three dimensional form and near-trapped 

modes are detected and discussed. 

 

GOVERNING EQUATION 

We assume that there are )1(N  vertical circular 

cylinder(s), each of which extends from the sea bottom in 

water of uniform depth h. Assuming linear wave theory, 

the velocity potential for incident waves is: 

 i t
(x, y, z, t) Re (x, y)f (z)e

 
                                 (1)  

where                                                                                     
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where xy-plane coincides with the mean free surface and 

z-axis is vertically upward.  A is the wave amplitude, ω is 

the circular frequency and κ is the wave number. The 

wave number and frequency are related by the dispersion 

relation:                                                                                

htanhg2                                                              
 (3) 

The free surface elevation is then given by:                        
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Fig. 1 Plan view of cylinders with various parameters used in relations 

 

For solving this problem we consider N+1 

coordinate systems. One of them is used as the reference 

frame at xy plane and each of the other N systems is 

located at the center of each cylinder. The origin of each 

coordinate system is denoted by ( xj, yj); aj  denotes the 

radius of jth cylinder, (r, θ) denotes the coordinates of an 

arbitrary point in reference frame and ( rj, θj), j 1,...,N

, denotes the coordinates of the same point in the jth 

coordinate system. Finally, β is the angle of incident wave 

with positive x-direction. The velocity potential of an 

incident plane wave propagating at an angle β to the x-

axis can be expressed in the following form: 
i r cos( )i (xcos ysin ) i rcos( ) j j

I je e I e
      
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Where, Ij is a phase factor associated with jth 

cylinder and can be written as: 
i (x cos y sin )

j j

jI e
  

   (6) 

The total potential function by considering the 

linear interaction of diffracted waves from each cylinder 

can be written as: 
N

j

I s

j 1

     (7) 

where 
N

j

s

j 1

  is the potential function of diffracted 

waves. The incident velocity potential,
I , is now 

expressed as a sum of Bessel functions (Gradshteyn and 

Ryzhik, 2000): 
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This leads to:  
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The general form of the diffracted potential 

associated with jth cylinder can also be expressed as: 

jinj j j
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For the same set of complex numbers 
j

nA . Where            

n jj j

n n

n j

J ( a )
Z Z
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

 
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n j n j n jH ( r ) J ( r ) iY ( r )     , 

nJ  and 
nY  are the Bessel functions and ja  is the radius 

of jth cylinder. In the present study ja  is considered to be 

identical for all cylinders. By using Graf’s addition 

theorem for Bessel functions and by imposing the 

boundary condition on cylinder surfaces, Linton and 

Evans (1990) derived an infinite system of equations with 

infinite 
j

nA  unknowns as follows: 
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where jk  is the angle that connector line from 

center of jth cylinder to kth cylinder makes with the 

positive x-direction and jkR is the distance between the 

center of cylinders jth and kth, as shown in figure 1. Since 

Graf’s addition theorem is valid if k jkr R  for all j, 

therefore, the derived potential function is valid as far as 

this condition is satisfied for each cylinder. By using (12), 

the potential function around each arbitrary cylinder such 

as kth cylinder can be written as follows (Linton & Evans 

1990): 

kink k

k k n n n k n k

n
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Now in order to evaluate the constant unknowns, 
n

jA , a finite system of equations rather than an infinite 

system of equations can be considered. This can be done 

by selecting a limited value for m boundaries which 

returns N(2M+1) equations and N(2M+1) unknowns: 
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 The value of M can be increased until the desired 

accuracy is achieved. It is obvious that by increasing M, 

the expense and duration of computing will be increased. 

We shall discuss about the efficient value of M in this 

article. Now the first-order force acting on the jth cylinder 

can be obtained by integrating the pressure over the 

surface of the cylinder, that is, 

j j j
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In which, 
jF  is the force acting on jth cylinder, F is 

the force acting on a similar isolated cylinder in the same 

incident wave train and ρ is the density of water. The 

minus and plus signs in the bracket corresponds to the x- 

and y- components, respectively. Equation (15) can be 

rewritten as: 
j

j j

1 1

F 1
(A A )

F 2

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                                 (17) 

This equation can be used for comparison of the 

forces acting on a specific cylinder when it is either in an 

array or is isolated and is under the same wave conditions 

in both cases. By using (4) the free surface elevation, can 

be obtained from the following equation: 

(x, y, t) A (x, y)                                    (18) 

or 

/ A (x, y)                                              (19) 

where (x, y)  could be derived from (13) by 

considering the relevant boundary condition for each 

cylinder. 

 

CALCULATION OF FORCES ACTING ON 

CYLINDERS LOCATED IN ROWS 
By using the results of previous section, the 

truncated system of equations is solved for various value 

of M and the j

nA  unknowns are computed. Then by using 

equation (16) the forces acting on cylinders are derived. 

This is down by writing a program in MATLAB. The 

force acting on the middle cylinder for arrays of 3 and 9 

cylinders compared with an isolated cylinder at the same 

wave feature for a certain frequency interval is shown in 

figures 2 and 3. For both cases 0  , a d 1 4  and 

M 4 . Cylinders are equally spaced along a line and the 

distance between adjacent cylinders is 2d. All cylinders 

has the same radius which is denoted by a. The obtained 

results coincide with those obtained by Maniar and 

Newman (1997) using a high order three dimensional 

spline-Galerkin method, and with those of Walker and 

Taylor (2005). Figures 2 and 3 show the significance of 

the parameter d , which relates the spacing between 

adjacent cylinders to the wavelength, on the force 

magnitude. As seen in figures 2 and 3 the critical modes 

with narrow peaks occur when d  is slightly less than 

2  multiples. Moreover as Walker and Taylor (2005) 

mentioned the magnitude of peaks increases as the 

number of cylinders in a row increase; for a 9-cylinder 

array the highest peak is approximately 3 times the force 

on a single isolated cylinder. For a 3-cylinder array the 

multiplicative factor is approximately 1.5.  

As another result these figures indicate that as the 

number of cylinders in an array increases, the bandwidth 

of critical modes for the middle cylinder reduces rapidly 

(i.e., peaks become narrower). The frequencies at which 

these magnification effects occur are referred to as near-

trapped mode frequencies. Trapped modes are of two 

types, namely Numann trapped modes and Dirichlet 

trapped modes. The Numann trapped modes, satisfy 

Neumann conditions on all solid boundaries and it is 

shown that a Dirichlet condition exists on the center plane 

for 0 a d 1  . Detailed description of trapped modes is 

given by Linton and Evans (1992) and Evans and Porter 

(1997b). 
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Figure 2. Force on middle cylinder in an array of nine 

cylinders divided by the force on a single isolated cylinder 

Figure 3. Force on middle cylinder in an array of three cylinders 

divided by the force on a single isolated cylinder.  
 

An interesting example is the case of four cylinders 

arranged at vertices of a square. For this configuration the 

forces acting on cylinders are computed for values of 

a h 0.5 , R h 2 and 4   . Each cylinder is 

located at the vertices of a square of side R at coordinates 

(-h, h), (h, h), (h, -h), (-h, -h) which named 1, 2, 3 and 4, 

respectively. The results are obtained for various κa 

values. Also the free surface elevation around legs and the 

space between them in critical modes are evaluated in this 

paper. 

The ratio of force acting on each cylinder to an 

isolated cylinder in the direction of incident wave for 

various κa values and for M values chosen from 1 to 6 is 

shown in fig 4. As can be seen the force acting on first 

and third cylinders is identical, in the figure the related 

curves are coincided. It should be mentioned that the 

results published by Linton and Evans (1990) for this 

arrangement of cylinders are in error as illustrated by 

Linton and McIver (2001).  

Figures (a) to (f) show that the critical values of 

force acted on cylinders occur when κa have slightly skew 

around multiples of 1.5. and the highest peaks occur for 

κa around the first multiple (for M 4 ). It is shown that 

the maximum force is acting on the forth cylinder and the 

minimum force is acting on cylinders 1 and 3. The 

bandwidth corresponding to the first critical κa is less than 

that of the other critical states, therefore, we can say that 

the wave-number in this state is related to near-trapping 

mode. 

(Figure 4, a)   

 
( Figure 4, b) 

 
 (Figure 4, c) 

 
 (Figure 4, d)  
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(Figure 4, e) 

      
(Figure 4, f) 

Figure 4. Non-dimensional first order force acting on 

cylinders located at vertices of a square in the direction of 

wave advance according to the coordinates in text, for: (a) 

M=1, (b) M=2, (c) M=3, (d) M=4, (e) M=5, (f) M=6.   

 
Also these figures indicate that for M 4  the 

results are not sufficiently accurate and for M 4  the 

difference between results is negligible. To assess this, we 

transferred the results obtained by the written program in 

MATLAB to an Excel spread sheet. The force acting on 

each cylinder obtained by varying the M value is shown in 

fig. 5. In order to make the figure more readable, the 

results for each cylinder are plotted separately. According 

to these figures we can say that by increasing the wave 

number (note that the radius is assumed constant), the 

deviance in results by varying of M value increases. Also 

before the first near-trapping mode, the deviance of data is 

negligible regardless of the value of M and after the first 

critical mode, the deviance of results is started. 

 

 
(Figure 5, a) 

 
(Figure 5, b) 

 
(Figure 5, c) 

 
(Figure 5, d) 

Figure 5. Non-dimensional first order force acting on 

cylinders located at the vertices of a square in the 

direction of wave advance according to coordinates in 

text, for various M values: a= cylinder 1, b= cylinder2, c= 

cylinder 3, d= cylinder 4. 

 

 In table 1 the ratio of the maximum force acting on 

each cylinder to the force acting on an identical isolated 

cylinder is shown for various values of M. By looking at 

the table we find that the κa value corresponding to the 

near-trapping mode is 1.69. In this case the force acting 

on the forth cylinder is 2.5 times the force acting on a 

similar isolated cylinder. Evans and Porter (1997) and 

walker et al. (2008) showed that for the same case but 

with h 3a , this value is approximately equal to 1.66. 

 

Evaluating the Free Surface Elevation around 

Cylinders 

In this section we shall consider the free surface 

elevation of linear water waves incident upon cylinders 

that are located at the vertices of a square. By solving the 

14 
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system of equations for M 4 , 4    and κa values 

corresponding to peak force values, i.e., values between 

1.65 and 1.69, the unknown coefficients are derived. Then 

for R 4a and h 2a  by using equation (13) and 

considering the Graf’s addition theorem, the magnitude of 

(x,y)  and the three dimensional surface elevation 

around each cylinder within its validated zone are 

calculated. The results for a 1.69   and a 1.66  are 

shown in figures 6 and 7. According to these figures, free 

surface elevation of water waves on or close to the 

cylinders surface are increased and at the zone between 

cylinders is relatively small. For a 1.66   we have the 

largest free surface elevation that occurs around the 

cylinder 2. Its magnitude is 3.5 times the incident wave 

amplitude whereas in a 1.69   it is 3 times the incident 

wave amplitude hence for a near-trapped mode, the 

maximum force and free surface magnification do not 

necessary occur at exactly the same frequency. 

 

Table 1. Maximum of non-dimensional first order force acting on cylinders located at the vertices of a square in the direction 

of wave advance according to coordinates in text, for various M values and corresponding κa values. 

6 5 4 3 2 1 M value Cylinder No. 

1.611618 1.611615 1.611353 1.656199 1.632763 1.632707 maxF F 
1 

1.69 1.69 1.69 3.18 3.05 3.06 a 

1.880353 1.880347 1.879945 1.883363 1.889397 1.698939 maxF F 
2 

1.69 1.69 1.69 1.7 1.69 1.65 a 

1.611618 1.611615 1.611353 1.656199 1.632763 1.632707 maxF F 
3 

1.69 1.69 1.69 3.18 3.05 3.06 a 

2.292639 2.292631 2.292347 2.294089 2.293751 2.138904 maxF F 
4 

1.69 1.69 1.69 1.69 1.69 1.67 a 

  

 
(a) Surface plot  

 
(b) Contour plot 

 Fig. 6 Free surface elevation of water waves around a 

four-cylinder array (R=4a, h=2a, κa=1.69). 

  
(a) Surface plot  

    
(b) Contour plot 

Fig. 6 Free surface elevation of water waves around a 

four-cylinder array (R=4a, h=2a, κa=1.66). 

 

CONCLUSIONS 

By using the interaction theory of Linton and 

Evans (1990), the forces acting on the cylinders that are 

located in a linear array, are calculated. When cylinders 

are located at the vertices of a square, the force and free 

surface elevation for critical κa values were analyzed.  
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It was shown that by increasing the number of 

cylinders in linear arrays, the force acted on the middle 

cylinder increases, also the bandwidth of trapped modes 

decreases and the required number of equations to achieve 

the sufficient accuracy increases. 

By studying the results for cylinders located at 

vertices of a square it was found that before the 

occurrence of the first near-trapped mode there is a 

considerable coincidence in results for various number of 

equations but after the occurrence of the first near-

trapping mode the deviance of data especially deviance 

between the results when the number of equations is less 

than 9 ( M 4 ) and from equations more than these 

states increased. 

The results obtained from MATLAB software can 

show the patterns about maximum loads acted on 

cylinders that used as supports of various marine 

structures and the free surface elevation around and 

between them, that by using of these results we can find 

the best geometry situation for cylinders to have optimum 

serviceability.  
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