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ABSTRACT: Adequate knowledge of lake water level variations is important for proper planning and 

management of water resources and design of environment. In this study chaotic behavior of monthly water 

level variations in the lake Van during January 1944 - April 2002 is investigated. The lake Van is the largest 

lake in Turkey. The methods and indicators of chaos theory (power spectrum, average mutual information, 

false nearest neighbours, correlation dimension and largest Lyapunov exponents) were applied. The value of 

power spectrum (4.1) indicate that chaotic (fractal) behavior to the lake water level time series. The optimal 

delay time (5 month) and embedding dimension (5) are obtained from average mutual information and false 

nearest neighbours techniques, respectively. Optimal values are then used for the estimation of the 

correlation dimension and the largest Lyapunov exponent for inspecting possible signatures of chaotic 

dynamics. The low correlation dimension (3.2) suggest the presence of low-dimensional chaos; also imply 

that the water level dynamics are dominantly governed by four variables. The positive largest Lyapunov 

exponent value (0.0085) indicated a signature of chaos. These results give a positive indication towards 

considering lake water level as a chaotic system. 

Keywords: Chaos theory, Correlation dimension, Lyapunov exponent, Power spectrum, Time series, Van   

Lake. 
 

INTRODUCTION  
 

Lake water level studying plays a significant role 

in management of   fresh water supply, designing and 

planning of lakeshore structures and environment. It is 

necessary to develop models for simulation of the level 

variations in order to control future lake level changes 

(Sen et all, 2000). 

 Recently different methods widely have been 

used for lake water level forecasting, including Artificial 

Neural Networks (Altunkaynak 2007; Ondimu and 

Murase 2007), Triple diagram model (Altunkaynak et al. 

2003), Markov model (Sen et al. 2000), Cluster 

regression (Sen et al. 1999), Fuzzy Logic (Altunkaynak 

and Sen 2007), Support vector machines (Çimen and 

Kisi 2009), Adaptive Neuro-fuzzy Inference system 

(Mpallas et al. 2011). During the past two decades, chaos 

theory showed its applicability in solving a wide class of 

problems in many areas of natural sciences and, in 

particular, of civil engineering and water-related 

applications: these studies are devoted to model and 

forecast natural phenomena and require, in each case, a 

deeper comprehension of the underlying dynamics. A 

preliminary study on the application of nonlinear time 

series analysis using delay coordinate embedding on the 

tidal data from the Venice Lagoon from 1980 to 1984, 

was carried out by Vittori (1992). Koçak (1997) 

successfully applied nonlinear prediction to water level 

time series. Zaldivar et al. (1998) employed nonlinear 

time series analysis for the detection of high water levels 

in Venice (Italy), whereas nonlinear dynamic analysis of 

coastal waters and the comparison with other existing 

methods have been reported by Frison et al. (1999). 

Solomatine et al. (2000) suggested the possibility of 

accurate predictions of the surge water level in the North 

sea with similar techniques.  Rahmstorf (2003) used a 

semi-empirical approach to study sea level fluctuations 

based on earth temperature changes. Khatibi et al. (2011) 

successfully employed chaos theory to hourly water 

level at Hillarys Boat Harbour, Western Australia. 

Lake Van is the largest lake in Turkey and for no 

studies have been found about the application of chaos 

theory in modeling of the lake water level, so the present 

study can be considered as a pioneering study presenting 

the usage of this method. This paper aims at 

investigating the possible presence of chaotic signals in 

the Van lake water level time series during January 

1944- April 2002. The remainder of the paper is 

organized as follows. Section 2 presents the 

methodology in this study. In Section 3, the data used, 

case study and results obtained are explained. The 

conclusions of this study are presented in Section 4. 
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METHODOLOGY 

 

Several methods have used for the investigation 

of chaotic signal in time series.  In this study the 

concepts and methods of chaos theory such as power 

spectrum, average mutual information, false nearest 

neighbours, correlation dimension and largest Lyapunov 

exponent are employed to analyse the chaotic signal of 

the water level time series. 

 

Power Spectrum Analysis 

Since chaotic systems are aperiodic, a power 

spectrum analysis can indicate the presence of periodic 

regimes (Ng et al. 2007). If the power spectrum, E( f ), 

obeys a power law form  

( )E f f                       (1) 

where f is the frequency and β is the spectral 

exponent, this is an indication of the absence of 

characteristic time scale in the range of the power law. In 

such a case, fractal behaviour may be assumed to hold 

(Sivakumar, 2006).  

 

Phase space reconstruction 

The concept of phase space is a powerful tool for 

characterizing dynamical systems. The delay embedding 

is one of the most popular methods for reconstructing 

phase space from a univariate or multivariate time series 

(Takens, 1981), assumed to be generated by a 

deterministic dynamical system with D degrees of 

freedom. The Takens theorem stated that the underlying 

(unknown) dynamics can be fully recovered by building 

a m-dimensional space wherein the components of each 

state vector tY


 are defined through the delay coordinates 

  )1(2 ,...,,,  mttttt XXXXY


    (2)
                                                      

 

where  m > 2D2 is called embedding dimension 

and   is referred to as delay time. If the dynamics of the 

system can be reduced to a set of deterministic laws, 

trajectories converge towards a subset of the phase space 

with fractional dimension, called attractor.  

Many methods have been proposed for the 

estimation of optimal values of the embedding 

parameters: within this work we adopted the 

minimization of the False Nearest Neighbours (FNN) for 

m and of the Average Mutual Information (AMI) for  , 

as suggested by Cellucci et al. (2003). 

For a given time series sequence
 

0 1 2{ , , ,..., ,..., }i nx x x x x  the mutual information indicates 

the amount of information about the state ix   if the state 

of ix is known. The average mutual information is 

defined by: 

( )
( ) ( ) ln

( ) ( )

N
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where ( )ip  and ( )jp 
 correspond to the 

probability of finding xi in the ith and xi+τ in the jth 

interval, and ( )ijp   is their joint probability. The first 

local minimum of ( )I  estimates the optimal selection 

for the delay time required for phase space 

reconstruction. In practice, it provides the maximum 

delay time such that xi+τ adds the largest amount of 

information about
ix .  

Successively, false nearest neighbours (FNN) 

search is used to determine the optimal embedding 

dimension m. In fact, a small value of m may not be 

sufficient to reconstruct the phase space, whereas a large 

value of m causes a large unfolding of the attractor and 

high computational cost (Cellucci et al. 2003). The 

method is as follows. For a fixed embedding dimenion 

m, and for each point in the phase space, we identify the 

K nearest neighbours. Then, we repeat our procedure in 

the m+1-dimensional phase space: if the reconstruction 

is not optimal, the nearest neighbours are different, i.e. 

they were false nearest neighbours.  

FNN method employs the search of false 

neighbours in phase space: when the ratio between the 

number of false neighbours at the dimension m +1 and m 

is below a given threshold, generally smaller than 5%, 

each m' > m +1 is an optimal embedding. However, if m' 

is too large, a poor reconstruction of few embedding 

states with several components is obtained and the next 

analyses should not be performed (Kennel et al. 1992). 

 

Correlation dimension 

Correlation dimension is the most widely used as 

fractal dimension quantifier, and is based on the 

correlation integral (Grassberger & Procaccia, 1983b). 

For an m -dimensional phase space, the 

correlation function Cm(r) is defined as the fraction of 

states closer than r  (Fraser and Swinney 1986): 
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where H is the Heaviside step function, iY


 is the 

i-th state vector, N is the number of points on the 

reconstructed attractor and r is the radius of the sphere 

centered on Yi or Yj. 

The number w is called Theiler window and it is 

the correction needed to avoid spurious results due to 

temporal correlations instead of dynamical ones. For 

stochastic time series 



Cm(r)r
m

 holds, whereas for 

chaotic time series the correlation function scales with r  

as 



Cm(r)r
D2                                                                (5)                                                                                                     

 

where D2, called correlation exponent. The 

correlation exponent is defined by 



D2  lim
r0

lnCm (r)

ln r
                                                    (6)                                                                                                  

 

and can be reliably estimated as the slope in the 



lnCm(r)  vs. )ln(r  plot. The slope can be computed by 

the least-squares fit of a straight line over a length scales 

of r. 

According to Grassberger-Procassia algorithm 

(1983), in case of deterministic  data  set the plot of ‘m’ 

versus ‘D2’ should be a straight line parallel to 

embedding dimension, in case of stochastic data set, it 

should be straight line sloping 45 degrees to x and y axis 
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. For chaotic system, the correlation exponent initially 

increases but finally saturates after a especial embedding 

dimension. The saturation value of the correlation 

exponent is defined as the correlation dimension. Figure 

1 shows the above three cases (Stochastic, Deterministic, 

Chaotic) characteristics. 

If the value of correlation dimension is small and 

fractal, in this case the system is a low-dimensional 

deterministic chaotic dynamic.  

 

 
Figure 1. Plot differentiating deterministic, stochastic 

and chaotic system 
 

Lyapunov exponents: 

The unpredictability is one of the important 

characteristics of a chaotic system, because the sensitive 

dependence on initial conditions. The largest Lyapunov 

exponent need only be considered, as it determines the 

total predictability of the system (Nagesh Kumar and 

Dhanya 2011). In general, Lyapunov exponent (  ) is a 

quantitative measure of the sensitive dependence on the 

initial conditions and to discriminate between chaotic 

dynamics and periodic signals are often used.  Lyapunov 

exponents quantify the divergence of nearby trajectories 

in the phase space, along a given direction. Given two 

nearby states and their Euclidean distance d(t0) at time t0, 

the largest Lyapunov exponent max , corresponding to 

the dominant divergence direction, is defined as: 

)(
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In the present work we adopt the method 

proposed by Rosenstein et al. for the estimation of 

max (Rosenstein et al.1993): it makes use of the 

stretching factor  
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along an orbit of 



t /t  time steps, where 



|i |  is 

the number of neighbours in the neighbourhood 



i
 of 

the reference state iY


 , and 



t  is the sampling time of 

measurements. For a chaotic dynamics, the stretching 

factor 



S(t)  is expected to be proportional to time, the 

largest Lyapunov exponent max being the 

proportionality constant. In other word in the case of 

chaotic dynamics, a plot of the stretching factor S against 

the number of points N (or time t = N. ) will yield a 

curve with a linear increase at the beginning, followed 

by an almost flat region. The slope of the linear portion 

of the first part of this curve gives an estimate of max  

(Rosenstein et al., 1993). To be chaotic, max must 

exceed zero. Only for systems with max between zero 

and one are chaotic predictions of any practical use. 

Usually in practice, one is interested in the maximal 

Layapunov exponent that can be used to categorise the 

type of the motion of the system as presented in Table 1. 
 

 

Table 1. Possible types of dynamics systems and the 

corresponding maximum lyapunov exponents (Siek 

2011)
 

Maximum 

Lyapunov 

exponent 

0max 

 

0max 

 
 max0   max  

Type of 

dynamics 

system 

Stable 

fixed 

point 

Stable 

Limit 

cycle 

Determini

stic chaos 

Noise 

(Random 

motion) 

 

 
Figure 2. The location of Lake Van in Turkey (Sen et al. 

2000) 

 

Table 2. Statistics of monthly lake water level time 

series at the Van lake 

Statistic Value  

Number of data 700 

Mean(m) 1648.20 

Standard deviation(m) 1.14 

Maximum value(m) 1650.53 

Minimum value(m) 1646.68 

Variance(m
2
) 1.32 

Skewness 0.32 

Kurtosis -1.96 

 

RESULTS AND DISCUSSION 

 

Study area and data used 

The monthly lake level data during January 1944 

- April  2002  of  Lake Van, the largest lake in Turkey, 

the biggest soda lake in the world, and the world's fourth 

closed basin lake with a volume of about 600 km
3
 is 

used in the study. The lake is located on the Anatolian 

high plateau in eastern Turkey (38.5°N and 43°E) 

(Figure 2). Lake Van has a large drainage basin of 12500 
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km
2
. The lake surface averages about 3600 km

2
 , the 

surface is approximately 1650 m above sea level and the 

deepest point is 457 meters (Sen et al., 2000). The lake is 

fed by small rivers, rainfall and melts water of ice. 

During winter months the lake has the lowest level, and 

rise after the spring with melting of snow from 

surrounding mountains. (Çimen and Kisi, 2009). The 

statistical parameters of the water level data for the Van 

lake are given in Table 2 and Figure 3 shows the 

variations of monthly data series.  

 

 
Figure 3. Monthly lake water level time series (January 

1944 - April 2002) 
 

Power Spectrum 

Figure 4 shows the power spectrum of the 

monthly water level series observed in the Van lake. The 

spectrum has been averaged over logarithmically spaced 

frequency intervals.The value of the β computed from 
the slope of the solid line, is approximately 4.1, and this  

an indication that chaotic (fractal) behavior to the lake 

water level time series  during this time interval. 
 

 
Figure 4. Power spectrum for monthly water level in the 

Van lake 

 

Time lag and Embedding dimension 

In this study   is computed using the AMI 

method using time lags of 1-200 month. The AMI shows 

well-defined first minima at time lag 5 month (Figure 5).  

Hence, the optimal embedding delay τopt is chosen 

as 5 for our analysis. 

The method used for the determination of the sufficient 

embedding dimension is based on the calculation of the 

percentage of false nearest-neighbours for the time 

series. In Figure 6 we show the density of FNN vs. the 

embedding dimension m for monthly time series: the 

optimal embedding is chosen to be m = 5. 

 

 
Figure 5. Average mutual information(AMI) function of 

the lake water level time series 

dimension 

 

 
Figure 6. Percentage of false nearest neighbour 

(FNN) of the lake water level time series in embedding 

 

Correlation dimension 

The correlation function calculated for the dataset 

using the delay times ( =5), determined by the AMI 

method in the previous section, and for embedding 

dimensions, m, from 1 to 20. Figure 7 shows the 

relationship between the correlation function C(r) and 

the radius r (i.e. lnC(r) versus lnr) for increasing m. 

The relationship between the correlation 

dimension values D2(m) and the embedding dimension 

values m  is shown in Figure 8.  

It can be seen that the value of correlation 

exponent increases with the embedding dimension up to 

a certain value and then saturates beyond it. The 

saturation of the correlation exponent beyond a certain 

embedding dimension value is the indication of an 

existence of deterministic dynamics. The saturated 

correlation dimension is ~ 3.2, (D2 = 3.2). The value of 

correlation dimension suggests the possible presence of 

chaotic behaviour and fractal characteristics in the lake 

water level time series. Because correlation dimension 

for the monthly water level is above 3, at least four 

independent variables are needed to describe the 

dynamics of the lake level variation of the Van lake. 

This also is taken as the minimum dimension of the 

phase space that can embedded the attractor.   
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Figure 7. lnC(r) versus ln r plots for water level data 

from The Van lake 

 

 

 
Figure 8. Relation between correlation exponent 

D2 and embedding dimension m 

 

Largest Lyapunov exponent 

We apply the method of estimation of the largest 

Lyapunov exponent described above to the water level 

time series for the Van lake data, using the same delay 

time and embedding dimension as before. Figure 9 

shows the curve for the stretching factor S versus the 

number of points N. The slope value corresponding to 

the largest Lyapunov exponent is obtained after the least-

squares line fit for the water level time series and is 
found to be 0.0085. This positive value indicate a strong 

signature of chaos. 
 

 

Figure 9. Estimation of the largest Lyapunov exponent 

using the method of Rosenstein et al. (1993) 

 

 

CONCLUSIONS 

 

This study investigated the existence of chaotic 

signals in the monthly water level data in lake Van, 

Turkey from January 1944 - April 2002. The power 

spectrum, average mutual information approach, the 

false nearest neighbor algorithm, the correlation integral 

analysis and the Lyapunov exponents analysis were used 

in the research by TISEAN package (Hegger et al. 1999) 

. The value of the power spectrum indicate that chaotic 

(fractal) behavior to the lake water level time series. The 

mutual information approach and the false nearest 

neighbor algorithm provided a time lag and embedding 

dimension which is needed to reconstruct phase space. 

The correlation dimension method provided a low 

fractal-dimensional attractor thus suggesting a possibility 

of the existence of chaotic signals. Based on the attractor 

dimensions, the minimum number of variables essential 

to model the monthly water level dynamics was 

identified as 4. Finally the positive largest Lyapunov 

exponent indicated a existence of chaos behavior, 

therefore , short-term reliable predictions are possible 

The authors are not aware of any study exploring 

possible presence of chaotic behaviors in Van lake level, 

so that comparsion of the results couldn’t  possible with 

another reference. 
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