
 
To cite this paper: Aalami M.T. 2012. The Presence of Chaotic Behavior in Monthly Soil Temperature Time Series by Correlation Dimension Method. J. Civil Eng. Urban., 2 (6): 

207-213. 
Journal homepage: http://www.ojceu.ir/main/      

          207 
 

 
 

© 2011, Scienceline Publication 

Journal of Civil Engineering and Urbanism 

 

Volume 2, Issue 6: 207-213 (2012)     ISSN-2252-0430 

 

The Presence of Chaotic Behavior in Monthly Soil Temperature 

Time Series by Correlation Dimension Method 
 

Mohammad Taghi Aalami* 
 

Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran 

 
* Corresponding author’s E-mail: Mtaalami@tabrizu.ac.ir 

 

ABSTRACT:  Soil temperature can fluctuate dynamically, suggesting a possible chaotic behavior in such 

time series, as this can have a significant bearing on hydrological models, solar energy and other agricultural 

applications. Hence, this paper reports an investigation into the detection of a possible existence of chaotic 

behavior in the monthly soil temperature time series at five depths (5, 10, 20, 50 and 100 cm) below the 

ground level in a recorded data (an observation station in Adana, Turkey). For this purpose, the correlation 

dimension method, as a customary indicator of chaotic behavior, was derived from the data record over a 

period of 8 years (January 2000 - December 2007).  The low correlation dimensions at five depths suggest 

the presence of low-dimensional chaotic behavior in the soil temperature dynamics.  
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INTRODUCTION 
 

An investigation is reported in this paper on the 

possible presence of chaotic behavior in monthly soil 

temperature time series with a focus on modeling studies 

but direct applications to project works is outside the 

remit of this paper. However, the motivation on the 

choice of soil temperature is that it plays a significant role 

in the hydrological models, solar energy applications and 

frost prediction (George, 2001; Mihalakakou, 2002; 

Koçak et al., 2004; Gao et al., 2008; Yılmaz et al. 2009).  

The effects of soil temperature on agriculture are 

widespread and examples include the influence on seed 

germination (Nabi and Mullins, 2008), plant growth (Liu 

and Huang, 2005), uptake of nutrients (Dong et al. 2005), 

soil evaporation (Katul and Parlange 1992). The modeling 

strategies already employed include analytical models 

(e.g. Droulia et al., 2009), semi-analytical models (e.g. 

Kang et al. 2000), empirical models (e.g. Paul et al. 

2004), Artificial Intelligence (AI) techniques (e.g. 

George, 2001; Bilgili 2010, 2011), numerical models (e.g. 

Gao et al., 2007 and 2008) and experimental methods 

(e.g. Enrique et al., 1999).  

Recently, research on non-linear dynamics 

(deterministic chaos theory) has been applied to a wide 

range of practical problems as a modeling strategy, 

signifying a possible a loss of temporal correlation in 

response to small perturbations, particularly in initial 

conditions. The application areas of chaos theory include 

many areas of natural sciences e.g. hydrology, 

hydrometeorology, oceanography (e.g. Sivakumar et al., 

2006; Henderson and Wells 1988; Khan et al. 2005; Men 

et al., 2004; Sivakumar, 2001 and 2000; Khatibi et al., 

2010; Ghorbani et al., 2011; Sivakumar et al., 1999; 

Stehlik, 1999 and many others). 

Soil temperature fluctuations are driven by 

variations in air temperature and solar radiation and the 

effects are displayed in daily and annual timescales. 

Theoretical models of the annual variation of daily 

average soil temperature are expressed by using a 

sinusoidal function at different depths (Hillel, 1982; 

Marshall and Holmes, 1988; Wu and Nofziger, 1999), 

reminiscent of tidal models. However, diurnal soil 

temperature fluctuations are functions of time and depth 

and Paul et al. (2004) argue that the fluctuations further 

depend on such parameters as: precipitation, soil texture, 

and moisture content as well as the type of surface cover 

(plant canopy, crop residue, snow. Thus, at daily 

timescales soil temperature fluctuations can be dynamic, 

particularly at the topsoil strata, as opposed to substrate 

soil temperature. The simple proposition in this paper is 

therefore to test if soil temperature can be modeled by 

chaos theory, which is a reflection of internal behaviors in 

the time history of one (or more) of system variables, 

normally referred to as time series. 

Chaos theory has been applied widely including 

those to soil science e.g. soil system (Culling 1988), 

ecological data (Turching and Taylor, 1993), soil 

formation (Phillips 1998), gold grade spatial series (Xie 

and Chen 2004), paddy soil strength (Lu Zhi-Xiong and 

Pan Jun-zheng, 2000), near-surface temperature (Koçak et 

al., 2004), electrical conductivity and gravimetric water 

content (Millán et al., 2009). However, the authors are not 

aware of any study exploring possible presence of chaotic 

behaviors in soil temperature and hence this study. There 

are various methods for identification of chaotic behavior 

and this study selects the simple correlation dimension 

method to detect the chaotic behavior in the time series 

(Zhi-Xiong and Jun-zheng 2000). The possible presence 

of chaotic behavior in monthly soil temperature time 

series is investigated at five depths (5, 10, 20, 50 and 100 
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cm) below the ground level over a period of 8 years 

(January 2000 - December 2007) in Adana, Turkey. 

The time series investigation reported in this paper 

is motivated by seeking modeling strategies to practical 

problems. In general, two broad approaches are feasibly: 

(i) distributed models, which are based on the application 

of laws of nature or empirical techniques (this approach is 

not used in this paper); and (ii) local models, which are 

often bottom-up data-driven techniques seeking deriving 

appropriate information from recorded data. Chaos theory 

is one of local modeling strategies and applied here to soil 

temperature. Practical implications of presence of chaotic 

signals in soil temperature are discussed later in the paper. 

The remainder of the paper is organized as follows. 

Section 2 presents the methodology in this study. In 

Section 3, the data used, case study and results obtained 

are explained. The conclusions of this study are presented 

in Section 4. 

 

MATERIAL AND METHODS 

 

Several methods are available for investigating 

chaotic behaviors in time series. The correlation 

dimension method suggests the possible presence of 

chaotic behavior and fractal characteristics of a process, 

leading to the identification of the number of dominant 

variables present in the evolution of the corresponding 

dynamical system (Sivakumar 2001). Several methods 

have been suggested to calculate the correlation 

dimension of the time series data (Grassberger and 

Procaccia 1983; Theiler et al. 1992). The algorithm of 

Grassberger and Procaccia (1983) is the most commonly 

used algorithm, which is used in this study to compute the 

correlation dimension of soil temperature time series. The 

algorithm is based on the phase space reconstruction of 

the time series. In this method a scalar time series 

 1 2 3, , ,..., Nx x x x  
is first considered. 

According to the Takens embedding theorem 

(Takens 1981), an m-dimensional phase space can be 

reconstructed from the time series Xi of soil temperature 

variations as: 

 2 ( 1), , ,...,i i i i i mX x x x x                               (1) 

 

where m  is called embedding dimension  and   is 

referred to as delay time. Phase space reconstruction 

requires an optimum delay time. Many methods have 

been proposed for the estimation of optimal values of the 

delay time. The Average Mutual Information (AMI) is 

used in this study for , as suggested by (Frazer and 

Swinney, 1986). 

For a given time series sequence 

0 1 2{ , , ,..., ,..., }i nx x x x x the mutual information 

indicates the amount of information about the state ix   

if the state of ix is known. The average mutual 

information is defined by: 

,
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Where p(xi) and p(xi+τ) correspond to the 

probability of finding xi in the ith and xi+τ in the jth 

interval,  and p(xi ,xi+τ) is their joint probability.  

The first local minimum of ( )I   
estimates the 

optimal selection for the delay time required for phase 

space reconstruction. In practice, it provides the 

maximum delay time such that xi+τ adds the largest 

amount of information about
ix .  

For an m-dimensional phase space, the correlation 

dimension is computed in terms of (Fraser and Swinney 

1986):  
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where H(x) is the Heaviside step function defined 

as H(x)=1 for x>0 and H(x)=0 for x≤ 0 , Xi and Xj can be 

obtained using Eq.(3), 
i jX X is the Euclidean distance 

between Xi and Xj, N is the number of points on the 

reconstructed attractor and r is the radius of the sphere 

centered on Xi or Xj. 

For stochastic time series 



Cm(r)r
m

 holds, 

whereas for chaotic time series the correlation function 

scales with r  as: 



Cm(r)r
D2                                                      (4) 

 

where D2, called correlation exponent. The 

correlation exponent is defined by 



D2  lim
r0

lnCm (r)

ln r

                                                 (5) 

and can be reliably estimated as the slope in the 



lnCm(r)  

vs. )ln(r  plot. The slope can be computed by the least-

squares fit of a straight line over a length scales of r. 

The average mutual information (AMI) approach 

and the correlation integral analysis are implemented by 

TISEAN package (Hegger et al., 1999).  

According to Grassberger-Procassia algorithm 

(1983), the behavior of ‘m’ versus ‘D2’ may undergo the 

following cases, which are illustrated in Figure 1: (i) for 

deterministic dataset, the behavior should be a straight 

line parallel to embedding dimension; (ii) for stochastic 

dataset, it should be straight line sloping 45 degrees to x 

and y axis; (iii) for chaotic system, the correlation 

exponent initially increases but finally saturates after a 

especial embedding dimension. The saturation value of 

the correlation exponent is defined as the correlation 

dimension. In the above cases (stochastic, deterministic, 

chaotic), the behavior is a low-dimensional chaos, if the 

value of correlation dimension is small and fractal. 

 

 
Figure 1.  Plot differentiating deterministic, stochastic 

and chaotic system 
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RESULTS AND DISCUSSION 

 

The monthly soil temperature data at five depths 

(5, 10, 20, 50 and 100 cm) over a period of 8 years 

(January 2000 - December 2007) is used in the study. The 

data were obtained from Adana meteorological station, 

located at 36°59′N, 35°18′E (Figure 2) at an altitude of 28 

m above sea level in the eastern Mediterranean region of 

Turkey. Adana is the fourth largest city of Turkey, and it 

is a major agricultural and commercial center (Bilgili 

2010). The statistical parameters of the soil temperature 

data for the Adana meteorological station are given in 

Table 1 and Figure 3 shows the variations of monthly data 

series. 

 

 

   

 
Figure 2.  The location of Adana meteorological station 

in Turkey (Bilgili 2010) 

Table 1. Statistics of monthly soil temperature time series for all depths 

Soil depth 

(cm) 

Number of 

data 

Mean 

(
o
C) 

Standard 

deviation (
o
C) 

Maximum 

value (
o
C) 

Minimum 

value (
o
C) 

Variance  

(
o
C

2
) 

Skewness 

5 96 22.17 9.61 37.6 7.1 92.41 0.051 

10 96 21.68 8.89 36.2 7.8 79.20 0.019 

20 96 21.40 8.36 34 8.5 69.94 0.002 

50 96 21.39 7.44 32.8 10.4 55.36 0.028 

100 96 21.44 6.09 30.9 12.3 37.12 0.059 

 

 
Figure 3. Monthly variations of soil temperature for all depths (January 2000 - December 2007) 

 

 To compute the correlation dimension, the delay 

time or τ was computed using the AMI method for 

different lag times (Figure 4). The first minima in the 

mutual information function can be considered as the 

optimal delay time. Hence, the optimal delay time is 

chosen as 4, 2, 2, 2 and 2 months for 5, 10, 20, 50 and 100 

cm depth of soil, respectively. 

 The correlation function is calculated for the 

dataset using the delay times ( =4, 2, 2, 2 and 2), 

determined by the AMI method, and for embedding 

dimensions, m, from 1 to 30. Figure 5(a-e) shows the 

relationship between the correlation function C(r) and the 

radius r (i.e. lnC(r) versus lnr) for increasing m for all 

depths. The relationship between the correlation 

dimension values D2(m) and the embedding dimension 

values m  is shown in Figure 5(f-j). 

Figure 5(f-j) shows that the value of correlation 

exponent increases with the embedding dimension up to a 

certain value and then saturates beyond it. The saturated 

correlation dimension (D2) and the minimum number of 

required variables to describe the dynamics of soil 

temperature for all depth listed in Table 2. The low and 

non-integer dimension suggests the presence of chaotic 

behavior and low dimensional deterministic dynamics in 

the soil temperature at all depths. To describe the 

dynamics of the soil temperature variations, the minimum 

number of variable is required. According to correlation 

dimension concepts, the nearest integer above the 

correlation dimension value provides the number of 

dominant variables influencing the dynamics of the 

underlying system (Sivakumar 2000). The correlation 

dimensions for the monthly soil temperature at all depths 

are 1.6, 1.8, 1.6, 1.4 and 1.6, so at least 2 independent 

variables are needed to describe the dynamics of the soil 

temperature variation, respectively.  
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Figure 4.  Average Mutual Information (AMI) function of the soil temperature for all depths 

 

The fundamental concept in chaos theory is that 

complex and random-looking behaviors are not 

necessarily the result of actual random systems but can 

also be from simple nonlinear deterministic systems with 

sensitive dependence on initial conditions. The derived 

parameters in Table 2 define the nature of chaotic signals 

in the dataset to be low dimensional. With this knowledge 

in hand, predicting future values become feasible, which 

can serve many practical problems such as soil 

temperature in hydrology, frost prediction and various 

applications in agriculture. 

This study is concerned only with the identification 

of chaotic signals, which can easily be extended as a 

prediction/forecast tool, for more details on prediction, 

see Sivakumar (2002), Koçak (1997) and Khatibi (2012), 

among others. While the purpose of using chaos theory 

should be to explain the physical mechanisms of the 

underlying system dynamics triggering chaotic behavior, 

applications so far have largely focused on identification 

and prediction of time series only. An extension to this 

study can be the identification of physical conditions 

under which low dimensional chaotic behavior prevails.  

This area of chaotic behaviors is seemingly 

overlooked and the authors are now focused on 

identifying telltale signs in physical behavior that are 

preserved in the models causing a loss of temporal 

correlation in response to small perturbations, often 

driven by initial conditions. 
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Figure 5. Correlation dimension results for soil depth time series: (a)–(e) logC(r) vs logr relationship at different depths; and 

(f)-(j) correlation exponent vs embedding dimension at different depths – (a,f) depth=5 cm, (b,g) depth=10 cm, (c,h) 

depth=20 cm, (d,i) depth=50 cm, (e,j) depth=100 cm 
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Table 2. The correlation dimensions of soil temperature 

at all depths 

Soil depth 

(cm) 

Correlation 

dimension 

(D2) 

Maximum number of 

required variables to 

describe the dynamics of 

soil temperature 

5 1.6 2 

10 1.8 2 

20 1.6 2 

50 1.4 2 

100 1.6 2 

 

CONCLUSIONS 

 

The existence of low dimensional chaotic behavior 

is investigated in the monthly soil temperature data at five 

depths 5, 10, 20, 50 and 100 cm in a gauging station in the 

city of Adana, Turkey. The average mutual information 

(AMI) approach and the correlation integral analysis were 

used in the research by TISEAN package (Hegger et al. 

1999). The mutual information approach provided a time 

lag which is needed to estimation of correlation 

dimension values. The low and non-integer dimension 

suggests the presence of chaotic behavior and low 

dimensional deterministic dynamics in the soil 

temperature at all depths. Based on the correlation 

dimensions, the minimum numbers of variables essential 

to model the monthly soil temperature dynamics were 

identified, signifying a more predictable model for 

predicting future values of dynamic soil temperature 

values in the presence of chaotic behavior. 
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