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ABSTRACT: This research aims to model Total Dissolved Solid (TDS) values at the Simineh River 

in northwest Iran by application of Artificial Neural Networks (ANNs) to evaluate existing water 

quality conditions and also to predict future conditions in this river. The input parameters of the 

ANNs model are Calcium (Ca), Chloride (Cl), Magnesium (Mg), Sodium (Na), Bicarbonate 

(HCO
3
), Sulfate (SO

4
), and water discharge (Q) from 1993 to 2011. The performance of the ANNs 

model was assessed in accordance with Root Mean Square Error (RMSE), Mean Absolute Error 

(MAE), and coefficient of determination (R
2

) between the measured and predicted values. The 

study also includes an estimation of the relative importance of these variables to determine 

appropriate input combinations. A method is used in this paper to calculate the relative importance 

of each input parameters, showing that magnesium and calcium concentrations are the most and 

least influential parameters, with approximate values of 18 and 12 %, respectively. The ANNs with 

different numbers of neurons in the hidden layer were constructed, and the model with 14 hidden 

neurons was selected as the best. Comparisons between the measured and predicted values show 

that the ANNs model could be successfully applied and provide high accuracy and reliability for 

water quality parameters forecasting. 

Keywords: Artificial Neural Networks, Total Dissolved Solid, Simineh River, Relative Importance, 

Water Quality 
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INTRODUCTION  

 

Contamination of surface water has become a 

major concern of local organizations involved to the 

management of water quality and quantity for human 

needs. However, assessment of surface water is 

difficult, because contamination is a function of 

numerous, complex interacting parameters. 

Nevertheless, hydrological modeling is a powerful 

technique of hydrologic system investigation for both 

research hydrologists and water resource engineers 

involved in the planning and development of 

integrated approaches for management of water 

resources. Since management decisions are usually 

made under conditions entailing considerable 

predictive uncertainties, realistic estimates of the 

possible errors contained in predictions are 

necessary. Limited water quality data and the high 

cost of water quality monitoring often pose serious 

problems for process-based modeling approaches. 

Ideally, these should be achieved by continuous 

updating of the parameters and predictive models. 

Higher precision can be achieved most efficiently 

using estimation methods.  

Water quality in the Simineh River which is 

used mainly for agriculture is degraded by diffuse 

(non-point) sources. Among water quality 

parameters, Total Dissolved Solid (TDS) is defined 

as the quantity of dissolved material in water, and it is 

one of the vital water quality parameters and 

continuously used to determine the water quality of 

rivers. For this reason this parameter was assessed to 

evaluate the water quality condition in this basin. 

Uncertainty is inherent in all methods of 

assessing surface water vulnerability to contamination 

and arises from errors in obtaining data, the natural 

spatial and temporal variability of the hydrogeology 

parameters in the field, and in numerical 

approximation. Traditional methods are poor at 

addressing the non-linearity, subjectivity, and 

complexity of the cause-effect relationships between 

water quality variables and water quality status; yet, 

they are the currently accepted methods. New 

approaches such as Artificial Intelligence (AI) 

techniques have proven their ability and applicability 

for simulating and modeling various physical 

phenomena in the water engineering field. Artificial 

Neural Networks (ANNs), which is another AI 

approach, could provide a framework from which 

real-time or simulated assessment of non-point 

source (NPS) pollution could be made in the Simineh 

River Basin. ANNs are parallel information 
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processing system and emulate the working processes 

in the brain. A neural network is an adaptable system 

that learns relationships from the input and output 

data sets and then is able to predict a previously 

unseen data set of similar characteristics to the input 

set (Haykin, 1999). 

Different aspects of this problem area are 

reported, among others, by Maier and Dandy (1996), 

Diamantopoulou et al. (2005), Kuo et al. (2006), 

Palani et al. (2008), Anctil et al. (2009), Singh et al. 

(2009), Chang et al. (2010), He et al. (2011), Gazzaz 

et al. (2012), Najad et al. (2013). ANNs also have 

been used successfully for predicting TDS (Kanani et 

al., 2008; Memon et al., 2009; Abudu et al., 2011; 

Asadollahfard et al., 2012; Mehrdadi et al., 2012; 

Abbasi et al., 2013; Heydari et al., 2013; Moasheri et 

al., 2013).  

The present work describes the development 

and training of the ANNs model for the purpose of 

estimating TDS. Calcium (Ca), Chloride (Cl), 

Magnesium (Mg), Sodium (Na), Bicarbonate 

(HCO
3
), Sulfate (SO

4
), and water discharge (Q) for a 

set of recorded data from 1993 to 2011 in the Simineh 

River were used as input parameters to predict TDS. 

The paper also estimates the relative importance of 

these input variables. The remainder of this paper is 

outlined as follows: in Section 2, overview of the 

ANNs model, relative importance index, the model 

performance evaluation, case study and data 

specification are presented; in Section 3, the results 

achieved with the ANNs model are presented and 

discussed; and finally, in Section 4, is leaved out some 

conclusions. 

 

MATERIALS AND METHODS 

 

Artificial Neural Networks (ANNs) 

McCulloch and Pitts (1943) are recognized as 

the first designers of Artificial Neural Networks 

(ANNs), which are generally inspired by the 

operation of the brain and nerve systems in biological 

organisms with a capability for self-learning and 

automatic abstracting. Neural networks consist of a 

set of neurons or nodes arranged in layers, and in the 

case weighted inputs are used, these nodes provide 

suitable inputs by conversion functions. Each neuron 

in a layer is connected to all the neurons of the next 

layer but without any interconnection among the 

neurons in the same layer. The weight learned for 

each neuron in ANNs model remains internal, and 

therefore, their associations with physical systems are 

often overlooked. 

The ANNs modeling strategy is implemented 

by Neural Network Toolbox in MATLAB 

(MATLAB
®

 software, 2013), which is a Feed 

Forward Neural Networks (FFNNs), or the Multi-

Layer Perceptron (MLP). The neural architecture 

involves three different layers: (i) an input layer, (ii) a 

hidden layer, and (iii) an output layer. The number of 

neurons in the input and output layers is defined by 

the number of input and output variables 

respectively, while the number of neurons in the 

hidden layer(s) is usually determined by trial-and-

error, and the neurons of each layer are connected to 

the neurons of the next layer by weights. In the 

hidden layer, each neuron computes ijw , a weighted 

sum of its p  input signals, 
ix  for ni ,...,2,1 , and 

applies a nonlinear activation function to produce an 

output signal, ju . A neuron j  is described 

mathematically by the following pair of equations: 





p

i
iijj xwu

1

.                    

(1) 

 

And 

 

)( jjj ux                                  (2)  

Where  is a threshold function and its use has 

the effect to apply an affine transformation to the 

output of the linear combiner in the model of Figure 

1 (see Haykin (1999)). In this study, the logistic 

sigmoid nonlinear function is used for this purpose, 

expressed as 

xx
e


1

1
                    

(3) 

 

 

Figure 1. Nonlinear model of a neuron- see Haykin 

(1999). 

 

Relative importance index 

In order to assess the relative importance of 

the input variables, the Garson equation is used, 

which is based on the neural net weight matrix. 

Garson (1991) proposed the following equation 

based on the partitioning of connection weights: 
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Where I
j
 is the relative importance of the j

th

 

input variable on the output variable, N
i
 and N

h
 are 

the number of input and hidden neurons, 

respectively, and W is connection weight, the 

superscripts i, h, and o refer to input, hidden, and 

output layers, respectively, and subscripts k, m, and n 

refer to input, hidden, and output neurons, 
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respectively. For further details, see Weckman et al. 

(2009). 

 

Model performance evaluation 

In this study, performance of the models is 

assessed in accordance with the root mean square 

error (RMSE), mean absolute error (MAE), and 

coefficient of determination (R
2

) between the 

observed and predicted values as shown in the tables. 

The RMSE, and MAE measure the errors while the 

R
2

 indicates the goodness of fit. Scatter plots and 

time series plots are used for visual comparison of the 

observed and predicted values. 

These performance measures and information 

criteria are calculated by: 


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Where T
i 
andT  are the observed values and 

their mean, respectively; T̂ andT
~

are the predicted 

values and their mean, respectively; n is the total 

number of records. 

 

Case study and data specification  

The Simineh River in northwest Iran is one of 

the largest and important rivers. The length of this 

river is about 200 km with a catchment of 2090 km
2

. 

The geographical coordinates of Simineh basin lies 

between 45° 35′  to 46° 25′  East longitudes and 36° 

1′  to 37° 56′  North latitudes (Figure 2).  

 

 

Figure 2. Location of the Simineh River 

 

In this study, the water quality data at 

Dashband gauging station in the Simineh River 

during 1993-2011 are used. Concentrations of the 

parameters have been measured in 531 streams, and 

each record consists of 7 parameters including: 

Calcium (Ca), Chloride (Cl), Magnesium (Mg), 

Sodium (Na), Bicarbonate (HCO
3
), Sulfate (SO

4
), 

and water discharge (Q). In order to develop ANN 

model for prediction TDS, the data are divided into 

two sets: (i) the data used for training the models and 

these make up approximately 80 percent of data (425 

sample); (ii) the data used for testing the models and 

these make up the remaining 20 percent of water 

quality data (106 sample). The mean variations of 

TDS and the other parameters of the gauging site 

used in this study are shown in Figure 3(a)–(h). 

  

 

Figure 3. (a & b). 
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Figure 3. Measured time series of the water quality 

parameters at the Simineh River: a) Calcium, b) Chloride, 

c) Magnesium, d) Sodium, e) Bicarbonate, f) Sulfate, g) 

Water discharge, h) TDS 

Table 1. Shows the statistical values of the used water quality data in this study. 

 

Table 1. Statistics for water quality parameters of Simineh River at the Dashband station, period 1993-2011. 

Data Unit  Mean Min. Max. Std. Dev. Skew Kurtosis 

Input 

Ca 

 Total 2.43 0.60 6.80 0.69 1.45 4.93 

mg/L Training 2.43 0.60 6.80 0.72 1.51 5.04 

 Testing 2.43 1.40 4.40 0.56 0.71 0.87 

Cl 

 Total 0.46 0.05 16.50 0.80 15.83 308.06 

mg/L Training 0.48 0.05 16.50 0.89 14.48 254.33 

 Testing 0.36 0.10 1.80 0.22 3.17 18.20 

 

Mg 

 Total 0.94 0.10 13.0 0.75 8.67 128.42 

mg/L Training 0.98 0.10 13.0 0.81 8.55 117.88 

  Testing 0.78 0.10 2.60 0.42 1.20 2.82 

Na 

 Total 0.50 0.10 24.0 1.18 15.83 304.52 

mg/L Training 0.54 0.10 24.0 1.31 14.31 247.29 

 Testing 0.35 0.10 1.80 0.21 4.07 23.35 

HCO
3
 

 Total 0.76 0.80 6.70 0.84 1.32 3.02 

mg/L Training 2.78 0.80 6.70 0.85 1.20 2.45 

 Testing 2.72 1.30 6.20 0.80 1.89 6.38 

SO
4
 

 Total 0.76 0.08 23.40 1.19 13.91 252.16 

mg/L Training 0.80 0.08 23.40 1.31 12.76 209.25 
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 Testing 0.61 0.10 2.94 0.35 3.42 19.23 

Q 

 Total 26.41 0.0 364.31 57.20 3.78 15.51 

m
3

/s Training 23.29 0.0 364.31 55.17 4.09 18.36 

 Testing 38.94 0.14 308.71 63.46 3.02 9.53 

Output TDS 

 Total 225.70 0.0 2730 145.63 10.51 167.16 

mg/L Training 229.32 0.0 2730 158.43 10.08 148.15 

 Testing 211.19 110.50 695.50 73.70 3.29 17.74 

 

RESULTS AND DISCUSSION 

 

The ANNs model architecture refers to the 

layout of neurons and the number of hidden layers; in 

this study, a typical ANNs model (Figure 1) with a 

back-propagation algorithm is constructed to predict 

TDS values. The back-propagation training algorithm 

is a supervised training mechanism and is normally 

adopted in most of the engineering application. The 

primary goal is to minimize the error at the output 

layer by searching for a set of connection strengths 

that cause the ANNs to produce outputs that are 

equal to or closer to the targets. Neurons in the input 

layer have no transfer function.  

 

Figure 4. Implementation of the ANN Model. 

 

Logarithmic linear transfer function was used 

in the hidden layer and linear transfer function was 

employed from the hidden layer to the output layer 

as an activation function, because the linear function 

is known to be robust for a continuous output 

variable.  

The network was trained in 1000 epochs using 

the Levenberg–Marquardt learning algorithm with a 

learning rate of 0.001 and a momentum coefficient of 

0.9. Preliminary model runs were tested with Ca, Cl, 

Mg, Na, HCO
3
, SO

4 
and Q; these led to the 

identification of the number of the hidden layer 

neurons (Figure 4). 

In this study, in order to adopt the most 

appropriate network geometry, trial-and-error 

procedure was used and different numbers of hidden 

neurons were investigated for finding the optimum. A 

three-layer network was selected, and the study tested 

the model with 2I+1 as recommended by Lippmann 

(1987). 

where I is the number of input variables. The 

number of hidden layers is one for all runs.  

Table 2 presents the effect of changing the 

number of the hidden layer neurons on the RMSE, 

MAE, and R
2

 statistics in training and testing periods. 

The results indicated that the network 

geometry with fourteen hidden neurons is required 

for a relatively better performance of RMSE, MAE, 

and R
2

 (30.119 mg/L, 16.986 mg/L, and 0.841, 

respectively). 

 

In ANNs modeling, the contributions of the 

individual input variables to the output variable are 

normally unknown. This study employs the Garson 

Eq. (4) to assess the relative importance of these 

input variables, which uses the network weights 

produced by the ANNs model. 

Table 2. The results of ANNs model for the training and 

testing periods to the identification of the number of the 

hidden layer neurons. 

Hidden 

Layer 

Neurons 

Training Testing 

RMSE 

(mg/L) 

MAE 

(mg/L) 
R

2
 

RMSE 

(mg/L) 

MAE 

(mg/L) 
R

2
 

1 35.970 22.455 0.950 32.149 18.803 0.840 

2 40.060 19.138 0.950 29.515 17.451 0.840 

3 33.840 21.523 0.955 31.616 18.652 0.831 

4 29.495 17.458 0.965 29.847 16.580 0.837 

5 30.532 17.779 0.963 31.108 18.043 0.829 

6 30.046 17.777 0.964 31.343 18.441 0.833 

7 30.636 17.623 0.963 31.587 17.481 0.828 

8 30.498 18.649 0.963 31.355 17.760 0.837 

9 33.948 21.733 0.958 34.160 19.309 0.809 

10 32.438 20.337 0.958 33.455 19.905 0.805 

11 30.032 18.023 0.964 33.310 19.667 0.799 

12 34.992 20.243 0.955 32.786 19.096 0.800 

13 26.828 17.536 0.971 30.744 17.488 0.826 

14 29.853 17.868 0.964 30.119 16.986 0.841 

15 29.515 16.642 0.965 31.726 17.577 0.816 

 

Figure 5 shows the scatter plots of the results 

obtained from the optimum ANNs model for testing 

dataset. The model gave close approximations of the 

actual observations, suggesting that these approaches 

are applicable for modeling the TDS dataset.  

 

Figure 6 presents relative importance of the 

input variables on TDS, and indicates that 

magnesium and calcium concentrations are the most 
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and least influential parameters, with approximate 

values of 17.56 and 11.78 %, respectively. 

 

Table 3 gives the values of matrices of weights 

between input and hidden layers and weights between 

hidden and output layers. 

 

 

Figure 5. Comparison of predicted ANNs time series with 

observed values for testing dataset: (a) Sequence plot, (b) 

Scatter plot.  

 

 

Figure 6. Relative importance of input variables on 

TDS 

 

Table 3. Matrices of weights- w1 weights between input and hidden layers, w2 weights between hidden and output 

layers. 

W1  W2  

Neuron 

Variable 

Neuron 

Variable 

Ca 

(mg/L) 

Cl 

(mg/L) 

Mg 

(mg/L) 

Na 

(mg/L) 

HCO
3 

(mg/L) 

SO
4 

(mg/L) 

Q 

(m
3

/s) 

TDS 

(mg/L) 

1 -0.0359 -0.7709 1.0689 2.2827 0.1683 1.1615 -0.1600 1 0.8078 

2 -0.7143 -1.0290 -0.3720 -1.1589 1.0623 -1.2420 0.3313 2 -0.5754 

3 0.2375 0.4220 -0.4355 1.1874 0.9715 -2.4002 0.4365 3 -0.4464 

4 -0.0974 1.7889 -0.4964 0.4307 0.2117 -0.7557 -0.6488 4 0.8517 

5 3.4288 -0.7376 -1.1994 0.8234 -2.8677 2.0686 -1.0979 5 -0.1644 

6 0.5613 -1.3707 1.4443 2.7392 -3.5131 -1.4783 -1.6958 6 -0.0952 

7 -1.4813 0.0735 -1.1773 -0.2775 1.6875 -0.1507 -0.3742 7 -0.7445 

8 -0.5992 2.2376 2.0662 -0.1764 0.3731 0.6566 -1.8344 8 0.1144 

9 -1.0443 0.6192 -0.5616 1.2724 -0.7222 0.6219 -0.9965 9 -0.2183 

10 -0.14063 0.9416 1.1090 0.4562 0.3200 -0.0154 0.0335 10 0.1979 

11 0.3532 1.5300 0.6438 -0.4494 -0.2224 1.0119 1.4426 11 -0.1320 

12 0.7681 0.5201 -1.1019 0.0737 -1.0853 -0.0376 -1.0260 12 0.2854 

13 -2.3626 0.0514 1.9098 -2.6700 0.5379 0.7493 -1.5977 13 -0.1089 

14 0.3468 -1.2038 -1.3103 0.3519 0.8189 0.0153 -0.0908 14 -0.1238 

CONCLUSION 

 

A study of Total Dissolved Solid (TDS) time 

series is reported in this paper using local water 

quality parameters of Calcium (Ca), Chloride (Cl), 

Magnesium (Mg), Sodium (Na), Bicarbonate 

(HCO
3
), Sulfate (SO

4
), and water discharge (Q) for a 

set of recorded data in Simineh River at Dashband 

gauging station during 1993-2011. The paper also 

employs the Garson equation to assess the relative 

importance of the variables to determine appropriate 

input combinations. The general objective of this 

study is to investigate the performance of Artificial 

Neural Networks (ANNs) for the estimation of the 

TDS amounts without assuming or applying 

significant knowledge of the physics of the process. 
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The ANNs with different numbers of neurons in the 

hidden layer were constructed, and model 

performance has been estimated by means of several 

indicators, including data sequence, scatter diagrams, 

and quantitative measures of RMSE, MAE, and R
2

. 

The modeling results indicated that reasonable 

prediction accuracy was achieved for the ANNs 

model. 
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